

Date Received

For Administrative Use Only

Full Research Project Final Report

- This report must be a stand-alone report, *i.e.*, must be complete in and of itself. Scientific articles or other publications cannot be substituted for the report.
- One electronic copy and one signed original copy are to be forwarded to the lead funding agency on or before the due date as per the investment agreement.
- A detailed, signed income and expenditure statement incurred during the entire funding period of the project must be submitted along with this report. Revenues should be identified by funder, if applicable. Expenditures should be classified into the following categories: personnel; travel; capital assets; supplies; communication, dissemination and linkage; and overhead (if applicable).
- For any questions regarding the preparation and submission of this report, please contact ACIDF

Section A: Project overview

- 1. Project number: 2015C028R
- 2. Project title: **Development and commercialization of aerobic digestion of poultry manure to produce bio-active fertilizers.**
- 3. Research team leader: Marc Legault
- 4. Research team leader's organisation: Alberta Agriculture and Forestry
- 5. Project start date: 2015 September 1
- 6. Project completion date: 2017 December 1
- 7. Project final report date: 2018 January 31

Section B: Non-technical summary (max 1 page)

Provide a summary of the project results which could be used by the funders for communication to industry stakeholders (e.g., producers, processors, retailers, extension personnel, etc.) and/or the general public. This summary should give a brief background as to why the project was carried out, what were the principal outcomes and key messages, how these outcomes and key messages will advance the agricultural sector, how they will impact industry stakeholders and/or consumers, and what are the economic benefits for the industry.

Alberta Poultry producers contribute to the Albertan economy by creating employment and revenue. However, inherent to poultry production is manure by-product that is viewed as a low value liability. This project provided an opportunity to support Alberta Agriculture and Forestry's commitment to develop technologies to transform agricultural wastes into value-added products. The fermentation of poultry manure to produce non-pathogenic biologically active plant nutrient solutions not only met this challenge but it also demonstrated how to use these value-added process solutions in a greenhouse setting while recycling all water. Poultry manure was chosen due its high nitrogen to carbon ratio and it typically contains less fibrous bedding materials than other manures. Bedding materials were problematic for initial efforts however as the project progressed these seemingly problematic materials were used to produce an additional value-added solids product.

The goal of this project was to enhance the value of poultry manure by producing biologically active fertilizers through aerobic digestion. A core accomplishment was the successful development of a fermentation process to produce non-pathogenic biologically active nutrient solutions; which could be applied to other agri-food organic wastes. The project successfully developed greenhouse methods for using these biologically active nutrient-rich solutions to safely grow food. Plant biomass and produce were observed to be healthy, particularly for heavy feeders such as the *Brassica* family, tomatoes and squash.

The hypothesized mechanisms associated with biologically active nutrient solutions are as follows. Microbial biomass acts as a slow-release source of nutrients that complement the manure-derived nutrients. Microorganism activity can suppress or counter soil pathogens. These solutions can improve soil fertility, thus leading to healthier soils which in turn promotes healthy plants.

The project furthered a sustainability goal by demonstrating waste is actually a resource. Future efforts could involve the co-fermentation of liquid and solid organic wastes. The goal is to destroy pathogens and increase the non-pathogenic bacteria cell count; the greater the cell counts of non-pathogenic microorganisms, the higher the nutrient content of the manure-derived solutions.

With regard to soluble carbon, the fermentation broth's soluble carbon significantly declines within days. Increasing the soluble carbon by adding methanol, increased the bacteria cell count a thousand fold. Therefore, co-fermenting manure with a soluble carbon waste stream would produce an ideal microorganism rich product while processing or disposing two waste streams.

Organic certification of the process would be a strong economic incentive for industry adoption. However, accredited organic authorities need to vet the process with regard to organic certification.

An exploratory economic analysis **[not including facility, overhead and utilities costs]** at the 1,000 liter scale suggests it is economically feasible to pursue this technology (or more prudently seek organic certification and /or scale up development). However, the 1,000 liter scale is likely inadequate for industry. Scaling up the technology may involve working with industry to use commercially available equipment to develop robust support equipment for feeding, dosing and harvesting the bioreactor. Attachment 1 highlights the economic analysis (Net Present Value, Benefit-Cost Ratio) assumptions and data.

Regulatory Authorities are required to define and assess applicable field and greenhouse regulations. Since the product is neither manure nor is it compost (nor compost tea).

Section C: Project details

1. Project team (max ¹/₂ page)

Describe the contribution of each member of the R&D team to the functioning of the project. Also describe any changes to the team which occurred over the course of the project.

Emmanuel Laate, Project Economist, provided the report's economic analysis.

Marc Legault, Project Manager and Engineer, developed the processes, data analysis, documentation and coordinated field trials.

Project Team Changes:

- i. Dr. Nick Savidov left Alberta Agriculture and Forestry prior to the project's commencement
- ii. Yingli Wang, technician, as of the Fall of 2016, was no longer involved with the project

2. Background (max 1 page)

Describe the project background and include the related scientific and development work that has been completed to date by your team and/or others.

The project's fermentation technology is a refinement of aerobic digestion. Aerobic digestion was first used by Alberta Agriculture and Forestry in the development of aquaponics where fish manure is used to fertilize plants. Fish manure is inherently diluted by water although strategies can be developed to concentrate the manure; the percent dry matter likely remains far less than other livestock manures. The advantage to digesting manures containing higher percent dry matter is that more concentrated nutrient solutions can be produced. A technical challenge for the project was to ferment as much manure as feasible per batch in order to produce concentrated biologically active nutrient solutions.

To facilitate industry adoption of the technology, this project focused on utilizing existing greenhouse equipment and techniques to demonstrate the use of these biologically active nutrient solutions to safely grow greenhouse crops. The biological activity of these nutrient solutions differentiates them from traditional synthetic fertilizers; as a consequence greenhouse techniques had to be modified in order to use these solutions. The incorporation of water recycling also necessitated the modification of existing greenhouse practices to maintain a sufficient nutrient chemistry and to monitor for toxic buildups; in particular, sodium levels.

The fermentation of poultry manure to produce non-pathogenic biologically active nutrient solutions, involved two central principles of operation. One, the control of pH to induce thermophilic pasteurization conditions and avoid nutrient loss by: phosphate divalent cation precipitates and ammonia off-gassing. Secondly, the constant addition of relatively pure oxygen was done to ensure aerobic conditions in order to maintain an odorless microbial decomposition of organic matter.

Only organisms native to manure were used in this non-aseptic fermentation process. All solutions were analyzed for pathogens (*E. coli, Salmonella* and other fecal coliforms) and periodic aerobic plate counts (i.e. total number of aerobic organisms). An aliquot of solution was tested [a DNA scan] for

thirty root rot pathogens, which was confirmed to be free of all pathogens [see Attachment 2 for details]. The solutions can be considered "safer" than untreated manure with regard to animal and root pathogens.

Project development was achieved through two stages, first it was necessary to develop, characterize and optimize the fermentation process while simultaneously developing the greenhouse processes and building the support infrastructure.

Specific agricultural and greenhouse regulations with regard to chemistry and microbiology were difficult to determine since the product is neither manure nor compost. As is identified in this report, soil contamination / remediation and compost regulations were used as guidelines.

3. Objectives and deliverables (max 1 page)

State what the original objective(s) and expected deliverable(s) of the project were. Also describe any modifications to the objective(s) and deliverable(s) which occurred over the course of the project.

Objectives - Original Project Objectives Prior to Staff Changes

- I. Characterize the fermentation process to ensure pathogen kill.
- II. Optimize the fermentation process to yield stable nutrient product solutions.
- III. Optimize the fermentation process to maximize the economic and nutrient value with regard to acid addition.

Deliverables - Original Project Deliverables Prior to Staff Changes

- I. An economic assessment of:
 - i. The financial suitability to use BANS to grow greenhouse crops
 - ii. The cost to ferment poultry manure to produce BANS
- II. A comprehensive "How to Manual" to describe in detail ARD's aerobic digestion technology to produce BANS, biologically active nutrient solutions
- III. Standard Operating Procedure, SOP's, to:
 - i. Ferment poultry manure to attain pathogen safe stable nutrient solutions
 - ii. Store, maintain viability of and use BANS
 - iii. Greenhouse production based on BANS as a source of plant nutrients
- IV. Data on the potential accumulation of sodium and other minerals associated with recirculation of hydroponic solutions containing BANS
- V. Data with regard to the impact of soil biology when using repetitive field BANS applications.
- VI. Economic analysis of producing BANS from poultry manure for greenhouse production
- VII. Final report

Objectives - Modifications with regard to staff changes

- I. Produce safe and effective plant nutrient solutions from poultry manure
- II. Develop a robust and industrialized manure fermentation technology
- III. Facilitate industry adoption of the technology by:
 - i. Demonstrating the use of solutions to grow greenhouse and field crops.

The project developed greenhouse and outdoor practices to use the nutrient solutions.

ii. Detailing process design including 'scale-up' considerations

Considerations for utilizing other manures were included in addition to scale up challenges.

iii. Providing detailed SOP's, batch records and data presentation

Process Control Forms for data capture were also developed.

Unless otherwise specified, the objectives of this project were successfully achieved.

Project Modification of Key Results: the experimental use of reagents [ammonium hydroxide (to enhance microbial biomass), vinegar (an antifoam agent), methanol (a soluble carbon source) and iron sulphate (to enhance iron concentrations)] were added as the project progressed.

Deliverables Modifications with regard to staff changes Key Results Expected

I. A detailed characterization of the fermentation process including in-depth nutrient analysis to document the optimization path and process scale-up considerations

This characterization process will address both controlled and uncontrolled process variables.

Process variables controlled or		Process variables NOT controlled nor		
mani	pulated	manipulated to date		
i.	pH control agents	i.	manure feedstock variability	
ii.	pH setpoints		project will try to process manures	
iii.	dO, dissolved oxygen		containing antibiotic residues	
iv.	gas (oxygen) flowrate	ii.	microbiology - the project will investigate:	
v.	antifoam agents		- if nutrient solutions impact the	
vi.	% DM, amount of manure per batch		Rhizobium inoculation of legumes	
vii.	duration		the continual use of mother liquor to	
viii.	agitation		optimize the fermentation	
ix.	mother liquor	iii.	temperature	

II. Industry trials and assessment of plant nutrient solutions derived from poultry manure (*The assistance from CARA, Chinook Applied Research Association was a modification*)

III. Demonstrate and assess greenhouse strawberry production techniques using nutrient solutions derived from poultry manure. Echinacea raft and substrate culture will be trialed

The cost of microbiological characterization hindered the quantification of the microbial contribution to the nutrient profile (\$12,000 for a single DNA scan to \$40,000 to assess plant growth, bio-

stimulant properties and basic microbiology). Project did not address the microbiology impact on *Rhizobium* inoculation.

4. Research design and methodology (max 4 pages)

Describe and summarise the project design, methodology and methods of laboratory and statistical analysis that were actually used to carry out the project. Please provide sufficient detail to determine the experimental and statistical validity of the work and give reference to relevant literature where appropriate. For ease of evaluation, please structure this section according to the objectives cited above.

Subject matter experts were contracted whenever possible throughout the project. Contracts were established for chemical and microbial analysis and wastewater treatment options. This project is grateful for the help from the Oyen, AB producer research group, the Chinook Applied Research Organization (CARA) in providing soil health experiment planning and advice. Alberta Agriculture and Forestry's Food Safety and chemical analysis subject matter experts (OS Longman colleagues) greatly assisted in the interpretation of pathogen and chemical analysis data.

Producing over 3,000 liters of biologically-active nutrient solutions for greenhouse and field trials was the driving force of this project, while the objective was to chart and document the developmental work for each batch.

The project tried to focus on two economic (and technical) factors:

- i. the more manure processed per batch, the better the potential economic returns
- ii. the quicker the production the better the potential economic returns

The 'Trial and Error' method was used to investigate the variables given below:

Process variables controlled or		Process variables NOT controlled nor
manipulated		manipulated to date
pH control agents	i.	manure feedstock variability
pH setpoints		project will try to process manures
dO, dissolved oxygen		containing antibiotic residues
gas (oxygen) flowrate	ii.	microbiology - the project will
antifoam agents		investigate: - if nutrient solutions impact
% DM, amount of manure per batch		the Rhizobium inoculation of legumes
duration		the continual use of mother liquor to
agitation		optimize the fermentation
mother liquor	iii.	temperature
	Process variables controlled or manipulated pH control agents pH setpoints dO, dissolved oxygen gas (oxygen) flowrate antifoam agents % DM, amount of manure per batch duration agitation mother liquor	Process variables controlled or manipulatedIpH control agentsi.pH setpointsdo, dissolved oxygengas (oxygen) flowrateii.antifoam agentsii.% DM, amount of manure per batchdurationagitationiii.mother liquoriii.

This methodology was utilized to determine the optimal solution harvest technique. The objective was to maximize the amount of solution per batch while minimizing solution dilution. The project contracted a wastewater company, ClearTech, to investigate the optimal flocculation agent for the process.

Harvesting the residual solids that originate from bedding materials became an objective as well as determining end-use applications for this solids product.

Objectives of the Project

I. Produce safe and effective plant nutrient solutions from poultry manure

Accredited 'Lab Houses' were contracted to assay the biologically active nutrient solutions. The effectiveness of the solutions to grow crops was qualitative, based upon the experience of qualified colleagues and visitors. Tree farm trials provided qualitative input. Solution safety was based upon the services of an accredited 'Microbiology Lab'; the most difficult pathogens to kill (*E. coli, Salmonella* and fecal coliforms) were chosen for investigation.

II. Develop a robust and industrialized manure fermentation technology

Poultry manure (complete with bedding, feathers, eggs, mites and miticides etc.) was added to water, followed by oxygen. Section C, subset 5, details the subsequent "Trial and error" methodology to characterize the fermentation (and harvest) trials, the greenhouse and field methods, to successfully utilize the biologically-active nutrient solutions.

- **III.** Facilitate industry adoption of the technology by:
 - i. Demonstrating the use of these fertilizer solutions to grow greenhouse and field crops.

The solutions were trialed indoors and outdoors for three years. Greenhouse trials and a novel innovative outdoor market garden trial were conducted at Crop Diversification Center, CDC, North; both trials utilized the biologically active nutrient solutions while continuously recycling all water. A southern Albertan tree farmer trialed the solutions for three years. [At worst: the solutions are as effective as synthetic fertilizers.] The producer research group, CARA, is currently investigating the solutions' (in particular the microbiological) impact on soil health.

ii. Detailing process design including 'scale-up' considerations

Process challenges and scale-up considerations were recorded as they were observed on Fermentation Run sheets and Batch Records. Project presentations and webinars outlined the technology's successes, challenges and pitfalls as detailed below in Section 5.

Much effort was directed in developing a robust harvest process involving equipment and pH manipulation. Overcoming the problematic lignocellulosic bedding materials for decant (settling) based harvest strategies was a challenge.

iii. Providing detailed SOP's, batch records and data presentation

Standard Operating Procedures (SOPs) and document control forms (Fermentation Run and Batch Record templates) used to capture data, are attached to this report [see Attachment 3 for Details].

The focus of this project was to help industry adopt this technology. In addition to the above documentation, the data presentation consists of fourteen fermentation and nutrient graph sets - one set per fermentation trial, (due to the cost associated with Trial 2, the second trial without pH control, does not have a nutrient profile like Trial 1).

The graphs are near continuous depictions of data along the fermentation runtime from t = 0 to harvest and often includes Quarantine Tank data. The graphs depict Temperature, Dissolved Oxygen and pH vs Time (in Hours and Days) using ten-minute graphing intervals. The graph title provides the pH and +/- setpoints, the date and the acid control agent other than phosphoric acid.

Each graph has a Text Box in order to readily compare:

- i. Volume of Mother of Liquor used, if any
- ii. Broth Volumes at t = 0, at harvest and amount of decant harvested
- iii. Bioreactor loading i.e. % dry matter and number of 20L manure pails added
- iv. The type and amount of acid and base used to control the pH

Process upsets (power loss, foam outs, etc.) and reagent additions (antifoam agents, methanol, vinegar, ammonium aliquots, iron supplements, etc.) are all denoted with respect to time on each Fermentation Runtime graph. The nutrient graphs illustrate the direct relationship between foam loss and nutrient loss.

The ideal way to display the graphs was to place the nutrient data graphs below the fermentation runtime graphs so as to provide a visual correlation between fermentation events and the corresponding nutrient profile graphs. Each run (except Trial 2) has either four or six corresponding nutrient profile graphs; the discrepancy is for extractable metals when the results were reported as less-than-values and consequently, are of little benefit.

NOTE: For future chemical and possibly microbial analysis, all fermentation runs (including the aborted ones) have retained broth samples stored at 2 - 5°C; these samples exist all along the runtime including the final harvest. Although Trials 15 and 16 were terminated, retained samples exist as there may be cellulose degrading organisms present.

Project activities with regard to greenhouse materials, methods and observations are given in Appendix C Greenhouse Methods and Observations.

Project activities with regard to engineering challenges and considerations including original apparatus are given in Appendix D Engineering Challenges and Considerations.

5. Results, discussion and conclusions (max 8 pages)

Present the project results and discuss their implications. Discuss any variance between expected targets and those achieved. Highlight the innovative, unique nature of the new knowledge generated. Describe implications of this knowledge for the advancement of agricultural science. For ease of evaluation, please structure this section according to the objectives cited above. NB: Tables, graphs, manuscripts, etc., may be included as appendices to this report.

The project demonstrated the feasibility of fermenting organic wastes to produce biologically active nutrient solutions. The pH was controlled to maximize the nutrient yield (from organic decomposition) and more importantly near-guarantees the thermophilic step to kill pathogens. Competition and predation from other organisms are other hurdles for pathogen survival within the solutions. The goal was to destroy pathogens and increase the non-pathogenic microorganisms that are believed to be key to the nutrient-rich solutions' success.

The project attempted to focus on two economic (and technical) factors:

- i. The more manure processed per batch the better the potential economic returns. The more manure per batch the more concentrated the nutrient solution, and therefore, the more favourable the economics of transport becomes.
- ii. The quicker the product is produced, the better the potential economic returns.

Discussion of process variables listed in Section C, subsection 4 Research design and methodology:

Process variables controlled or manipulated:

i.) pH Control Agents

The project trialed various pH control agents to determine the advantages and disadvantages of each; [See Appendix B, Table 1 pH Control Agents for details]. When using sulphuric acid it appears "foam-outs" occur at the end of the run, whereas when using phosphoric acid, foam losses occur in the beginning. A blend of 1 part sulphuric acid to 4 to 5 parts phosphoric acid appear to be the most favourable acid agent. Nitric acid produced the most manageable foam (easily collapsed on itself) but nitric acid usage was discontinued since the buildup of nitrate caused the solutions to be over diluted in order to attain safe nitrogen levels. Unlike ammonium, nitrate ions do not appear to be incorporated into microbial biomass thus leading its accumulation. A 100 fold or greater dilution was required to have safe ammonium and nitrate levels; this caused an over dilution of trace elements, especially iron. Additionally, nitric acid is a non-permitted substance for Canadian organic compliance. The preferred base control agent was 2 parts potassium hydroxide (caustic potash) to 1 part ammonium hydroxide.

In general terms, when using phosphoric acid and ammonium hydroxide as pH control agents, ammonium and phosphate ions (as expected) both tended to increase while calcium, magnesium, iron and manganese ions showed the classical asymptotic loss curve (steep decline followed by modestly stable value). When nitric acid is the control agent, ammonium ions tended to climbed in value (due to in part to ammonium hydroxide as the base agent) whereas phosphate ions (which was not added)

was relatively constant in two cases but gradually declined to less than half in the third case, suggesting loss due to precipitation.

ii.) pH Setpoints

The optimal fermentation pH setpoint is a tradeoff between:

- i. near neutral pH 7 for maximum thermophilic pathogen elimination temperatures
- ii. lower pH's near or below pH 6.6 to prevent nutrient loss from ammonia off gassing and phosphate cation precipitates

Two pH setpoints may be an option; the initial pH setpoint (near neutral pH) would induce thermophilic conditions. After the pathogen elimination step, the pH setpoint could be lowered to maximize nutrient stability.

iii.) Dissolved Oxygen, iv.) Gas Flow Rate v.) Antifoam Agents

The bioreactor utilized manual control of oxygen and antifoam.

The cause and effect inter-reactions between foam control, temperature, agitation, % dry matter (%DM) and oxygen flowrate were routinely noted. The more manure fed to the bioreactor (i.e. higher % DM), the more oxygen and agitation required to support metabolic activity. The greater the metabolic activity, the greater the temperature, and the higher the temperature, the more likely microorganisms will die. Upon death, cells rupture and release proteins into the broth, and the more protein in the broth, the more likely foaming will occur. Also, the higher the oxygen flow rate, the greater the likelihood of foam formation. Foam also insulates the open bioreactor from heat loss. As such, foam loss may lead to heat loss. However, if the process utilized air instead of relatively pure oxygen, the higher flow rates (to attain the same oxygen level) would induce more foaming and temperature stripping.

Antifoam is a barrier to oxygen transfer since oxygen bubbles, cells and instrumentation become coated in antifoam consequently it has a great negative impact on oxygen transfer to cells. The less oxygen to cells, the lower the metabolic activity, thus leading to an immediate decrease in broth temperature (loss of foam insulation can contribute to heat loss). All fermentation temperature graph lines are 'saw tooth'; this highlights the negative impact of antifoam on temperature. Earlier runs have handwritten arrows to denote antifoam addition times that correspond to an immediate temperature loss. Many temperature graphs have an overall cyclic (sinusoidal) aspect over the fermentation runtime; it has been speculated that this may correspond to the rise and fall of different microbial populations.

vi.) % Dry Matter (% DM), amount of manure per batch

The more manure per batch, the more concentrated the resulting nutrient solution, and as such, the more favourable the economics of transport becomes. To this end, each batch saw an increase in manure loading; initial batches were near 4% DM while dry matter increased up to 15% DM (Trial

11), which was far too much for the given agitation assembly (3 hp motor and 2 aggressive impellors). At 15% DM, the broth was not homogenous in temperature and possibly pH (the pH probe in question may have been failing), the oxygen distribution was also hampered. Based on temperature uniformity, 13 % DM proved to be the maximum load for the given bioreactor.

NOTE: Temperature measurement is considerably more robust than pH; consequently there's less likelihood that conflicting temperature measurements are from failing temperature sensors. Constant exposure to thermophilic temperatures in addition to abrasion from suspended grit was extremely problematic for pH probes.

For the given bioreactor assembly, 10 to 12% DM is ideal especially if the manure contains bedding. Bedding material is required for efficient nutrient solution harvest.

vii.) Duration

The quicker the product is produced the better the potential economic returns. For this reason, the fermentation runtimes (reaction times) were cautiously decreased. Initial reaction times for the first few runs which also had lower % DM loading were quite long at thirty days or more. Labour logistics and harvest equipment breakdowns were responsible for one run, exceeding forty days. Towards the end of the project, reaction times decreased as the quantity of manure fed to the bioreactor increased. A conservative processing time of 12 days was used to generate economic assumptions. Therefore, it may be feasible to shorten the fermentation to as little as 7 days or less.

viii.) Agitation

Aggressive agitation enhances oxygen transfer, but the entrainment of abrasive grit is a negative consequence. Scale-up contemplations should consider the use of aggressive agitation assemblies that incorporate inline aeration; (it is recommended to substitute the aeration component with oxygen). Turborator[™] is one such technology [http://www.mgdprocess.com/turborator.html].

ix.) Mother Liquor (includes discussion for process variables NOT controlled)

Typically, the inclusion of Mother Liquor, [a broth aliquot from prior run(s)], serves to hasten the thermophilic step and, possibly, the rate of mineralization, (the microbial decomposition of organic matter into plant available nutrients). Trial 6 (see Attachment 4 Trial 6 for details) may highlight a potential drawback of using too much Mother Liquor. This run had 40% Mother Liquor where it appears that nitrification (the microbial conversion of NH₄ to NO₃) may have caused the broth to become acidic; an increase in NO₃ and a decline in NH₄, supports the likelihood of nitrification occurring even though the pH was low for the nitrification due to *Nitrosomonas* and *Nitrobacter* bacteria. However, other chemotrophic organisms could also be responsible for nitrification induction. Nitrification is a negative impact since the end product nitrate is an unstable nitrogen compound with regard to shelf life. The Biological Oxygen Demand (BOD) also stalled at a high BOD point, suggesting a decrease in overall microbial activity.

Hypothesis: The broth was NH₄ rich due to Mother Liquor from Trial 5. Upon startup of Trial 6 as the broth became oxygenated. The nitrification process was initiated, which led to an

acidification from the conversion of NH_4 into NO_2 then NO_3 . It is likely that the nitrifying organisms were present in the manure and not the mother liquor since typical N-cycle bacteria would have been killed from Trial 5's thermophilic step.

Process variables NOT controlled nor manipulated to date

i.) Manure feedstock variability

The project utilized two types of layer manure; one contained bedding materials and the other did not. Neither contained antibiotic residues, and consequently, the project did not run trials with manures having antibiotic residues. However, miticides and other dusting powders could be sources of contamination.

iii.) Temperature

Broth temperature was a direct result of fermentation conditions. An ideal run has an inherent thermophilic step that serves to pasteurize, if not, eliminate pathogens. Temperature increases are due to metabolic activity; often a loss of temperature signifies a decrease of activity. Most runs easily met the minimum compost pasteurization requirement of 3 days at 55°C [Guidelines for Compost Quality PN 1340, Canadian Council of Ministers of the Environment, 2005].

Reagent additions such as iron sulfate, vinegar, methanol and ammonium hydroxide were experimented with as aliquots. The goal was to further enhance the solutions' nutrients and / or the microbiology biomass [see Appendix B, Table 2 Reagents for details]. Towards the end of the project, the biologically active nutrient solutions were complete; no other plant supplements were required. The nutrients from poultry manure combined with the pH control agent additions seemed to yield near-balanced solutions for plant growth [see Attachment 5 for details].

Initially, foliar applications of iron were required for many plants. After ferrous sulphate heptahydrate was added to the fermentation broth, iron supplementation was no longer required, thus suggesting this iron continued to be plant available, or microbial activity mediated iron uptake. Supplementing the fermentations with iron does appear to create a unique foam; this foam can easily be 4 to 6 inches thick along the bioreactor walls. It is suspected that the positive ("+") iron charges are bridging with the cells' negative ("-") charges. Foam must be washed back into the bioreactor – as *E. coli* could be shielded from heat by the foam and thereby contaminate the broth, which is especially detrimental once past the thermophilic phase.

Methanol additions were first tested at a 150 L scale using an oxygenated post-thermophilic (approximately 50°C high point) aliquot from Trial 6. Once the culture was fed 3.78 L of methanol, the temperature went up immediately by over one degree Celsius. Three days later, the culture was fed sugar (the amount to saturate a 3.78 L solution at ambient temperature). This had no effect, other than temporally decreasing the dissolved oxygen, suggesting an increase in metabolic activity was observed but it was not enough to have an effect on the temperature. The following day the greenhouse emitted a yeasty, doughy smell, suggesting yeast was cultured. The 50°C broth aliquot likely contained yeast, since 50°C is not lethal to yeast survival.

The solutions typically have biological activity up to and at times beyond 10^9 +/- 10^2 cells per mL. The addition of methanol yields a thousand fold increase in cell density [see Attachment 4 Trial 11 for details].

Fermentation Observations

The technology's robustness was repeatedly highlighted; loss of: power, oxygen, agitation and /or pH control continued to yield seemingly effective nutrient solutions. At times, broth pockets were so anaerobic that characteristic foul odours were noted; reprocessing the batch appeared to yield nutrient solutions of comparable quality. Without doubt, some bacteria are more plant beneficial than others, just like some batches must be better than others. However, the noted robustness likely stems from the fact that all microorganisms can become readily available nutrients for plant uptake.

The project consisted of sixteen fermentation runs including two "baseline runs" without pH control; all runs were oxygenated [see Attachment 4 for Fermentation and Nutrient Graphs]. All other runs had pH control; four runs used phosphoric acid, three runs used nitric acid and one run used sulphuric acid. The six remaining runs used a combination of phosphoric and sulphuric acid to control pH. The base pH agent was ammonium hydroxide for the first eight pH control runs. Trial 11 used potassium hydroxide as the base agent – manual aliquots of ammonium hydroxide were often added to supplement the ammonium concentration in order to spur metabolic activity and increase microbial biomass. The five remaining runs used a combination of potassium and ammonium hydroxide to raise pH levels.

Without pH control [the first two fermentation trials], the cultures quickly became 'self-limiting' from attaining a pH of near 9 and consequently, they did not attain thermophilic pasteurization temperatures; the broths barely attained 40°C [see Attachment 4 Trial 1 and 2 Fermentation Runtime graphs]. The Nutrient Profile for Trial 1 is a text book example of nutrient loss due to high pH. Significant nutrient losses were observed due to ammonia off-gassing and likely irreversible phosphate-divalent cation precipitates [see Attachment 4 Trial 1 graphs for details].

However, aside from the loss of nutrients due to high pH [see Attachment 4 Trials 1, 11], nutrient concentrations increase with decreasing pH at time of harvest [see Attachment 4 Trials 13, 14] and foam loss is a nutrient loss [see Attachment 4 Trials 9, 10 and 11], no other firm rules could be determined.

Trial 11 [see Attachment 4 Trial 11] used sulphuric acid and caustic potash for pH control; aliquots of ammonium hydroxide were added (to increase microbial biomass). In this case ammonium rose, phosphate ions were modestly stable, calcium and magnesium ions oscillated but rose overall whereas iron and manganese ions were approximately stable. In hindsight, a sulphuric acid run (and possibly a series of runs) should have been repeated.

The last three successful runs (see Attachment 4 Trials 12, 13 and 14) used the aforementioned combinations for pH control; it is considerably more difficult to identify trends since vinegar and iron were added to the broth. Ammonium ions generally rose in concentration over time whereas phosphate ions were steady for two runs. Trial 14 was very uncharacteristic, since phosphate asymptotically plummeted 30 fold from 800 to 250 ppm. Calcium ions for these runs tended to be

stable, however, Trial 12 had a rather large cyclic oscillations of calcium, magnesium and iron ions. The fact that Total Hardness (as calcium carbonate) also followed these oscillations, this suggests chemistry, rather than microbiology, is responsible.

The last two fermentations (Trial 15 and 16) stalled and did not attain the thermophilic pathogen elimination step; likely due to residual negative by-product(s) from the use of vinegar as an antifoam agent. Trial 15 and 16 had the greatest viscosity, observed by the fact that the limestone grit [1/16" to 1/8" diameter] remained suspended for days when broth aliquots were allowed to settle.

Runs 12, 13 and 14 successfully used vinegar as a means to delay the need for antifoam. The delay in using antifoam allowed the cultures to attain temperatures near and slightly above 70°C. Eventually, the cultures required antifoam, and as such, the temperatures decreased immediately. The discarded trials 15 and 16 that contained Mother Liquor from trials 12, 13 and 14 likely stalled from negative by-products from the vinegar.

It was observed that pathogens were killed due to residence time in the quarantine tank (see Trial 11 Fermentation graph). This elimination was likely due to competition with and predation by other organisms. This may be an additional means for pathogen reduction or elimination. Trial 11 obtained a thousand-fold more cells by supplementing the culture's soluble carbon with methanol. Pathogen elimination due to competition would likely still occur for solutions having lower cell counts (from not being fed methanol); however it may take longer. Prior to automatic pH control when acid was periodically added to the broth manually, *E. coli* elimination was routinely observed even though the broth did not attain the 3 days at 55°C pasteurization threshold. As previously mentioned, this elimination was likely from competition and predation.

Trial 7 used nitric acid as the control agent and the oxygen addition assembly was modified to deliver more oxygen in a controlled manner; the corresponding thermophilic step had a significant temperature rise rate and high point. When using nitric acid in comparison to phosphoric acid, the baseline temperature increased from 50°C to 60°C. It is suspected that the temperature rise was most likely due to oxygen enhancement. The run had a near 5 day plateau at 65°C, and the broth went from 10°C to over 40°C in less than 24 hours.

The project routinely tested for heavy metal contamination; Canadian Environmental Quality Guidelines Summary Table <u>Soil Quality Guidelines for the Protection of Environmental and Human</u> <u>Health</u> was used as a guideline. These guidelines report contamination values for agricultural land on a dry weight basis using mg/kg dry weight; the solution values are reported using a wet weight basis of mg/L. Bioreactor feed slurries were dried and analyzed by Contract Labs to investigate the contamination risk potential. These manure slurries typically have greater than 85% moisture content. The manure feed slurries were dried to compare the dry weight data to comparable dry weight regulations. **It is not practical (or conceivable) to dry these solutions prior to field application**. This analytical exercise was to understand the slurry's chemistry. In this instance, when drying the manure slurry, molybdenum, selenium, tin and zinc were above the limits for agricultural soils using the Canadian Environmental Quality Guidelines Summary. When reviewing this dry weight data against Alberta Tier 1 Soil and Groundwater Remediation Guidelines 2014, <u>Soil Remediation</u> <u>Guidelines</u>; for Fine Agricultural Soil, copper concentrations for the dried slurry were also elevated. In summary, contamination risks would exist if utilizing dried product slurries. Repetitive manure slurry applications would need to be assessed, as is true with repetitive manure applications.

Using a screw press to harvest the solutions was a significant achievement. Decant and flocculation strategies for harvest worked well for broths having a low percent dry matter, % DM. For initial runs having low % DM, the biologically active nutrient solution harvest volumes were easily 50% of the total broth volume. As the % DM increased, the inefficiencies of decant strategies to harvest became much more apparent; the harvest rate declined to only 20% to 30% of total volume for high % DM broths when using the decant method. When using a screw press greater than 90% of the broth can be harvested provided that lignocellulosic bedding materials are present. The initial poultry bedding was wood chips; this material was reduced in size due to bird activity and once harvested, the residual solids resembled wet sawdust.

To harvest with a screw press, the manure should contain bedding (bovine manure containing straw could be mixed into manures not containing bedding). Lignocellulosic materials, typically associated with bedding, fill the screw press's flight screws; which serves to trap the finer materials.

Later in the project, it was determined that acidification of the broth to pH 5 to 5.5 prior to harvest was required. This step is believed to enhance nitrogen stability by discouraging nitrogen cycle bacteria to convert ammonium to nitrate and to avoid phosphate divalent cation precipitates. This lower pH also inhibits ammonia which could lead to off gassing loss. Acidifying the broth at the time of harvest raises the nutrient concentrations, especially for divalent cations including iron [see Attachment 4 Trials 13 and 14]. Due to error, Trial 11 had a quarantine tank pH greater than 7; Trial 11 Nutrient Graphs highlight the corresponding ammonium, phosphate (declined by half) and divalent cation nutrient losses (due to high pH) where magnesium ions nearly disappeared [see Attachment 4 Trial 11].

When the broth was harvested by settling and decanting an analytical comparison of the residual slurry (Mother Liquor) and the chemistry of the decant solutions showed the Mother Liquor to have considerably higher nutrient and data values except for chemical oxygen demand (COD). Although the decant and remaining residual slurry (i.e. Mother Liquor) were from the same batch, the decant was considerably lower in nutrients. [See Attachment 6 for Bar Graphs]. Prior to chemical analysis all samples are first filtered to remove solids including microorganisms; consequently the microorganism contribution to the nutrient profile is lost.

The project tested the use of flocculation agents to shorten the decant time and enhance solution clarity. A wastewater company, ClearTech, was contracted to investigate the best flocculation agent for the process. The selected agent, CP 1080 at 86 mg per L broth, enhanced the settling time and broth clarity, but this harvest strategy was abandoned due to associated nutrient losses from using flocculation agents. [See Attachment 7 for Bar Graphs].

Product stability (shelf life) was explored by comparing the chemical analysis of a sample stored at 5°C for 77 days to the same solution stored in a shed outside during the summer for the same period of time [see Attachment 8 for Bar Graphs]. The ammonium concentration did not change between the two lots. The outdoor solution was not aerated which may explain the loss of nitrate, NO₃, likely due to nitrogen gas loss from denitrification, thus confirming that NO₃ is not as stable as NH₄. Solution

aeration could encourage the conversion of ammonium to nitrate (a negative outcome); project greenhouse solutions are typically aerated to maintain viable bacteria population(s). The acidification of the nutrient solutions serves to discourage the loss of nitrogen via denitrification by the *Nitrosomonas* and *Nitrobacter* nitrogen cycle bacteria.

There was some divalent cation variability, especially the extractable metals (which is best thought of as acid soluble rather than acid extractable where weakly bound metals are solubilized by the acid preservation agent). Dissolved phosphate values were constant suggesting mechanisms other than phosphate-divalent cation precipitates were responsible for dissolved magnesium and calcium ion losses.

The above Stability Data and Bar Graphs are from a single data set. Since this data is from a single data set, firm conclusions are not realistic. However, this work may serve as a model for future stability work or studies. Involving analytical chemistry professionals for such stability work would be of immense benefit. Microbiologists would also contribute immensely, especially if microbiology profiles were determined.

The biologically active nutrient solutions were associated with robust plant biomass and harvest. In addition, it was noted that "cabbage moths" didn't really impact the outdoor trial's brassica plants (broccoli, kale and red cabbage), whereas 300 meters away, garden plots of similar vegetables were completely destroyed by these pests.

Hypotheses:

I. The robust growth observed, could be due to water recycling in particular the "Brassica-favoured" anion SO_4^- would be constantly available and is not lost as in soil applications.

Note: the SO₄ ion concentration is augmented from using sulphuric acid as a pH control agent.

- II. A solution component(s) may be discouraging insects or the plants are healthier to resist the attack hatched larvae are present but in much lower numbers.
- III. Increased plant turgor pressure, due to constant water exposure prevents insect attack.

A high sulphate, approximately 5,000 ppm SO₄ stock solution (that contained approxiamately1,200 ppm NO₃ and NH₄) was trialed to see if dilutions including no dilution of this solution would discourage club root infection of canola plants. The greatest dilution had approximately 670 ppm SO₄ and approximately 370 ppm NO₃ and NH₄. This experiment was unsuccessful; a subsequent literature review suggested the nitrogen levels were too high. The stock solution only had 10^7 organisms per mL. There may be merit in trialing a low nitrogen solution with considerably more organisms such as from methanol supplementation.

6. Literature cited

Provide complete reference information for all literature cited throughout the report.

Alberta Tier 1 Soil and Groundwater Remediation Guidelines 2014, Soil Remediation Guidelines

Canadian Environmental Quality Guidelines Summary Table Soil Quality Guidelines for the Protection of Environmental and Human Health

Guidelines for Compost Quality PN 1340, Canadian Council of Ministers of the Environment, 2005. ISBN 1-896997-60-0

National Standard of Canada, Canadian General Standards Board – CAN/CGSB-32.311-2015 Organic production systems — Permitted substances lists

7. Benefits to the industry (max 1 page; respond to sections *a*) and *b*) separately)

a) Describe the impact of the project results on Alberta's agriculture and food industry (results achieved and potential short-term, medium-term and long-term outcomes).

Fermenting organic wastes to produce biologically active plant nutrient solutions benefits Alberta's agri-food industries by providing an additional option for the province's organic waste. These biologically active nutrient solutions would be ideal for field fertigation, which is the technique of adding liquid fertilizer solutions while irrigating. Existing liquid manure injection equipment could be used to inject these readily plant available nutrient solutions for field applications.

The information generated by the project confirms waste is a resource. The following challenges need to be addressed before industry will implement this concept into a business model: identifying applicable greenhouse and field regulations, and scale up considerations. Industry can make this into a profitable business, especially if organic certification can be achieved. Organic certification should be feasible since the technology uses the same reagents that are permitted in the production of organic fish-based fertilizers.

Water recycling and the use of biologically active nutrient solutions have benefited the Alberta Greenhouse Industry by demonstrating this proof of concept for over two years, and obtaining organic status would likely foster industry adoption of the technologies.

b) Quantify the potential economic impact of the project results (e.g., cost-benefit analysis, potential size of market, improvement in efficiency, etc.).

An initial economic analysis for the 1,000 liter scale [not including facility, overhead and utilities costs] indicates it may be economically feasible to pursue this technology. The Return on Investment (ROI) can be between 250% to 600% depending on the wholesale value of the biologically-active nutrient solution (three scenarios based on wholesale pricing are provided). The ROI values do not account for basic business overhead costs; although the assumptions are conservatively realistic the outcome may be overly optimistic. Attachment 1 highlights the economic assumptions, Net Present Value and Benefit-Cost Ratio analysis, data and assumptions

The 1,000 liter scale is likely too small for an industrial setting. Scaling up the technology involves integrating existing equipment to develop robust support equipment in particular feeding, dosing and harvest functions.

8. Contribution to training of highly qualified personnel (max ¹/₂ page)

Specify the number of highly qualified personnel (e.g., students, post-doctoral fellows, technicians, research associates, etc.) who were involved in the project.

The project greatly complemented the project engineer's fermentation and greenhouse applications background. The project provided exposure to current and future greenhouse applications and challenges. Developing the methods and infrastructure to utilize biologically-active nutrient solutions and water recycling was a much appreciated skill set enhancement.

9. Knowledge transfer/technology transfer/commercialisation (max 1 page)

Describe how the project results were communicated to the scientific community, to industry stakeholders, and to the general public.

The results from this project were presented to the scientific community, industry stakeholders and the general public via:

- a) Scientific Presentations
 - Cultivating Connections Alberta Regional Food Systems Forum February 2017 presented
- b) Industry-oriented presentations
 - Green Industry Show & Conference, Edmonton November 2016 presentation booth
 - The Festival of Big Ideas, Edmonton June 2017 presentation booth
 - Northlands Farm Fair, Edmonton November 2017 –booth complete with hydroponic demonstration (live plants including active water recycling
 - Green Industry Show & Conference, Calgary November 2017 presentation booth
- c) Media activities
 - 45 minute Webinar February 2017 https://gov-ab.webex.com/govb/lsr.php?RCID=efad04702be168748dcef68e2a55633c.
- d) Commercialisation activities or patents
 - The CDC North site hosted many tours most notably:
 - Chinese Delegation July 2016 6 individuals
 - U of A Permaculture Group 40 individuals

The opportunity to showcase the technology's products was an excellent means to advertised Alberta Agriculture and Forestry's efforts to utilize waste as a resource.

Section D: Project resources

- 1. Statement of revenues and expenditures: Please see attached spreadsheet
 - a) In a separate document certified by the organisation's accountant or other senior executive officer, provide a detailed listing of all cash revenues to the project and expenditures of project cash funds. Revenues should be identified by funder, if applicable. Expenditures should be classified into the following categories: personnel; travel; capital assets; supplies; communication, dissemination and linkage; and overhead (if applicable).

Please see attached 11 x 17 spreadsheet, Project C028R Final Report Financial Statement.

Provide a justification of project expenditures and discuss any major variance (*i.e.*, $\pm 10\%$) from the budget approved by the funder(s).

		Budget over Project 2.25 year Duration			
Item	Description	Original	Actual	% Variance	Justification of Expenditures and Variances
1	People	\$326,250.00	\$256,450.16	27	Reflects Project Loss of: -2.25 years fulltime scientist position - 1.25 years fulltime project technician
2	Travel	\$4,500.00	\$12,177.91	-63	Increase travel to S. Alberta - CARA in Oyen, AB - tree trials Strathmore, AB - weekend, afterhours greenhouse / bioreactor monitoring - mileage
3	Capital Assets	\$83,076.00	\$35,513.92	134	Project saved funds by borrowing equipment and building in-house greenhouse infrastructure
4	Supply	\$61,425.00	\$143,308.52	-57	Analytical costs were substantial in addition to material and supplies for building greenhouse infrastructure
5	CDL	\$4,000.00	\$2,747.30	46	Project was unable due to labour restrictions to organize a workshop

Original budget included \$19,258 for Overhead which was distributed among the other categories.

2. Resources:

Provide a list of all external cash and in-kind resources which were contributed to the project.

Total resources contributed to the project					
Source	Amount	Percentage of total project cost			
Funders ACIDF maximum value \$200,175.00	\$199,518.51	44.3 %			
Other government sources: Cash	\$59,492.48	13.2 %			
Other government sources: In-kind	\$181,186.82	40.3 %			
Industry: Cash	\$10,000.00	2.2 %			
Industry: In-kind					
Total Project Cost	\$450,197.81	100%			

Please see attached 11 x 17 spreadsheet, Project C028R Final Report Financial Statement.

External resources (additional rows may be added if necessary)					
	Government sources				
Name (only approved abbreviations please)	Amount cash	Amount in-kind			
Alberta Agriculture and Forestry	\$59,492.48	\$181,186.82			
		Industry sources			
Name (only approved abbreviations please)	Amount cash	Amount in-kind			
Sustainable Poultry Farming Group, BC	\$10,000.00				

Section E: The next steps (max 2 pages)

Describe what further work if any needs to be done.

a) Is new research required to deal with issues and opportunities that the project raised or discovered but were not dealt with within the current project?

To advance the conclusions of this project, other academics and researchers should be involved to study and validate the process/ products. We would expand the collaboration to include other Albertan Producer Research groups. The Chinook Applied Research Association, CARA, in Oyen, AB will be starting up a lab specializing in soil health assessments. This is a great opportunity to work with producers in the emerging soil health field.

Another area of opportunity is developing co-fermentation strategies where trialing other organic feedstocks, in particular other manures, with and without a waste soluble carbon feedstock would be of interest to the industry.

b) Is there related work that needs to be undertaken to continue advancement of the project technology or practice?

To continue advancing this project, agronomy trials should be conducted to quantify the solutions impact on plant growth and harvest.

Hypothesis: The solutions' microbiological activity would suppress soil pathogens.

- i. Hypothesis could be trialed (as an organic process) in both greenhouse and field settings.
- ii. Although water recycling is currently not an organic practice this is an opportunity to lead by demonstrating the merits of water recycling for soil based growing systems.

It appears Brassica plants respond very well from continuous exposure to sulphate; which suggests growing Chinese vegetables as a demonstration crop could be useful for organic practices and water recycling may be feasible.

- c) Did the project identify any new technology or practice that needs to be developed?
- *d)* What suggestions do you have that increase commercial use of results by farmers and/or companies. These may be:

1. Commercial Uptake.

Commercial uptake is more likely to occur once organic certification for the process is obtained, due to the high interest from the organic industry/farmers.

2. Further Research Toward Commercial Use

Scaling-up the technology to 5,000 liter scale will demonstrate the process at an industrial scale. It is suggested that utilizing an industrial computer control system to control pH, dissolved oxygen and antifoam addition would be particularly useful. A robust manure feeding mechanism is required, as

well as an auger system that may also entrain the manure into a slurry. A bioreactor tank design is recommended to allow for the removal of grit and ease of harvest.

The products are neither manure nor compost (nor compost tea), therefore manure and compost regulations may not apply. The solutions can be considered "safer" than untreated manure. An aliquot of solution was tested [a DNA scan] for thirty plant root pathogens, which was free of the tested pathogens. A poultry amended soil sample tested positive for five pathogens (it is unknown if these pathogens were present in the soil and / or manure [see Attachment 2 for details]. A thorough assessment by qualified professionals is required to evaluate associated contamination risks.

Product stability studies would be required for marketing and application purposes.

This technology could be exploited as a heat source (in addition to a CO_2 source) for greenhouses. This involves operating the bioreactor in a semi-continuous manner. Carbon dioxide emission from the bioreactor into the greenhouse is favourable during photosynthesis. Theoretically, it should be possible to operate the bioreactor in a near-continuous thermophilic phase which would provide a 60°C to 70°C heat source. Since the solutions are concentrated, it is possible to harvest 10 to 20 L after the pathogen elimination step and then feed the bioreactor more manure (and soluble carbon) to possibly maintain the heat phase.

The work sought out in the Microbial Biomass Identification and its Contribution to the Nutrient Profile, would likely be a pre-requisite for CFIA acceptance of the products.

It is recommended to test the solutions bio-stimulant effects with regards to plant and soil health.

A consideration which was out of this project's scope included the regulatory compliance to address virus risks, in particular the "Bird Flu" risk. Moving forward, the product(s) will be required to conform to CFIA fertilizer or amendment regulations.

3. Extension and information disbursement

Section F: Research Team Signatures and Employers' Approval

The team leader and an authorised representative from his/her organisation of employment MUST sign this form.

Research team members and an authorised representative from their organisation(s) of employment MUST also sign this form.

By signing as representatives of the research team leader's employing organisation and/or the research team member's(s') employing organisation(s), the undersigned hereby acknowledge submission of the information contained in this final report to the funder(s).

Team Leader	
Name: Marc Legault	Title/Organisation: Bio-Industrial Engineer Alberta Agriculture and Forestry
Signature:	Date: 01 February, 2018
leam Leader's Employer's App	proval
Name: Honq Qi	Title/Organisation: Director, Bio-Industrial Opportunities Section Alberta Agriculture and Forestry
Signature:	Date: Feb2, 2018

Team Leader's Organisation

Research Team Members (add more lines as needed)

1. Team Member	
Name: Emmanuel Laate	Title/Organisation: Senior Crop Economist Alberta Agriculture and Forestry
Signature: Hoafe Team Member's Employer's Approv	Date: Feb 1, 2018
Name: Philippa Rodrigues	Title/Organisation: Director, Economics Section Alberta Agriculture and Forestry
Signature:	Date: Feb1/18

Appendix A. Permitted Organic Substances

Excerpts from: National Standard of Canada, Canadian General Standards Board – CAN/CGSB-32.311-2015; Organic production systems — Permitted substances lists

Highlights denote substances used in poultry manure fermentation project

Fish meal, fish powder, fish wastes, hydrolysate, emulsions and solubles	The following fish products are permitted: fish meal; fish powder; and hydrolysate, emulsions and solubles. Fish farm wastes shall be composted.		
	Ethoxyquin or other synthetic perservatives, fertilizers and other chemically synthesized substances not listed in this standard shall not be added to fish products.		
	Chemical treatment is prohibited, except that liquid fish products may be pH adjusted with the following, in preferential order:		
	 a) vinegar; b) non-synthetic citric acid; c) synthetic citric acid; d) phosphoric acid; or e) sulphuric acid. 		
	The amount of acid used for pH adjustment shall not exceed the minimum needed to stabilize the product.		
Iron	The following sources of iron are permitted, to correct documented iron deficiencies: ferric oxide, ferric sulphate, ferrous sulphate, iron citrate, iron sulphate or iron tartrate. See <u>Table 4.2 Micronutrients</u> .		
Surfactants	Non-synthetic substances. See <u>Table 4.2 Formulants</u> , <u>Table 4.2 Wetting agents</u> , and <u>Table 4.3 Soaps</u> ; table 4.3 <u>Vegetable oils</u> .		

Table 4.2 – Soil amendments and crop nutrition

Table 6.5 - Processing aids

<mark>Oxygen</mark>	No annotation.
Potassium hydroxide	For pH adjustment. Prohibited for use in lye peeling of fruits
(caustic potash)	and vegetables.

Appendix B. Table 1 pH Control Agents

pH Agent	Pro's	Con's
	relatively safe	increases the likelihood of
pH Agent Phosphoric Acid Nitric Acid Sulphuric Acid Potassium hydroxide Ammonium hydroxide	increases phosphate concentrations	nutrient loss especially divalent cations: iron, calcium, magnesium, manganese
	foam occurs at the beginning(?)	foaming tends to be greater
	a permitted organic reagent	most expensive
	appears to increase the baseline temperature from 50 to 60°C	
	increases nitrate concentration	rather dangerous
	less nutrient loss (due to foam	most nutrients become over diluted since greater solution dilutions are required due to
Nitric Acid	entPro'srelatively safe increases phosphate concentrations foam occurs at the beginning(?) a permitted organic reagentappears to increase the baseline temperature from 50 to 60°C increases nitrate concentration less nutrient loss (due to foam cheap higher concentrations of divalent cation nutrients i.e. no phosphate-precipitate losses the associated foam is more manageable (readily collapses)Cheap, Increases sulphate concentration Appears to have better feather degradation Foam occurs towards the end 	high nitrate concentrations
	higher concentrations of divalent cation nutrients i.e. no phosphate-precipitate losses	not a permitted organic reagent
	the associated foam is more manageable (readily collapses)	
	Cheap,	
	Increases sulphate concentration	rather dangerous
Sulphuric Acid	Appears to have better feather degradation	may appear to produce
	Foam occurs towards the end (?)	(annost) on-odours
	a permitted organic reagent	
Potassium hydroxide	Increases the potassium concentration	
	a permitted organic reagent	
Ammonium hydroxide	Increases the ammonium concentration likely leading to an increase in biomass	May not be a permitted organic reagent(?)

Appendix B. Table 2 Reagents

Reagent				
neugent	Pro's	Con's		
Proposed Effect				
Ammonium Hydroxide	Increase available ammonium to increase biomass, metabolic activity	May not be a permitted organic reagent(?)		
Methanol Increase soluble carbon content	1000 fold increases microbial density, cells per mL Can be used to increase the citric acid concentrations in stock solutions	Expensive May not be a permitted organic reagent(?)		
Antifoam Agents	Arrests foam / nutrient loss	Decreases owngon transfer		
[10, 20 and 30% emulsions of silicon were trialed]	Can be a permitted organic reagent	leading to temperature loss		
Vinegar, CH3COOH Antifoam agent	Greatly delays the need for antifoam especially if added at the start of the fermentation, allows broth to attain 70°C temperatures a permitted organic reagent	Appears to create a buildup of compound(s) that negatively impact the fermentation (stalled reactions) Especially pronounced in the carryover of Mother Liquors Additions late in the fermentation run may trigger exceptionally large "foam outs" leading to major nutrient losses		
Iron sulphate Increase the iron concentration ideally sequestered in microbial biomass	Iron concentrations increased upto10 fold Unknown if sequestered in microbial biomass Appears to be plant available since chlorosis has not been observed a permitted organic reagent	Appears to create a dense and thick foam - suspect the '+' charge is bridging '-'charged cells and / or cell debris. These foam layers (nearly crusts) can easily be 6" thick.		
Citric acid, C6H8O7 A possible organic pH control agent [may be too weak]	not assessed – greater concentration if mixed with alcohol – may serve to enhance soluble carbon a permitted organic reagent			

Appendix C. Greenhouse Methods and Observations

Greenhouse biologically active nutrient solutions were trialed at Crop Diversification Centre (CDC) North. The trials involved raft and drip irrigation of soil-less substrate culture; the soil-less mix consisted of equal parts coconut coir, a mycorrhizal inoculated peat moss (containing perlite) and perlite. Greenhouse trials and an outdoor tree farmer trial were started one year prior to the project; both continued for two additional years.

The project had to develop or refine existing greenhouse culture techniques to utilize the biologically active nutrient solutions. These solutions were trialed for three years in both a soil-less greenhouse setting which recycled all water and outdoor tree trials. Outdoor trials, including soil-less substrates (perlite, sand, biochar, humalite and the above soil-less mix) were tested while continuously recycling all water. Masonry sand as a substrate had the poorest drainage of all tested substrates. Humalite possibly due to microbial activity appeared to raise the feed solutions' sodium and iron concentrations.

Plastic troughs served as the indoor and outdoor plant beds; a 3 cm thick rigid porous plastic sheet was placed along the entire bed bottom which was then covered with landscape fabric which also covered the bed walls. The soil-less substrate placed inside these plant beds was contained by the landscape fabric.

Sediment containment traps were required to eliminate sediments from the recycled water and thereby prevent sediment introduction into the feed tanks. Clean-out traps are recommended especially if plants are to be cultured beyond two years; this requires an easily accessible piping penetration to allow the removal of piping plugging due to root growth.

Biologically active nutrient solutions differ from other nutrient solutions as they are rich in microorganisms. The billion organisms per mL in these solutions are "nutrient storehouses" in addition to the solution's chemical nutrients.

Hypothesis: The microbial biomass act as a slow-release source of nutrients that complement existing nutrients in the manure-derived, biologically active solutions for plant uptake.

In regards to manure not containing bedding materials, it was difficult to clarify the fine lignocellulosic materials. During greenhouse trials, these lignocellulosic materials quickly plugged up inline feed filters. Fortunately, these materials do not plug up irrigation drip emitters, and as such, inline filter use was abandoned.

The concentrated solutions (up to 50 to 60 fold dilution required) contain ammonium ions, NH₄, as the dominant nitrogen form. For greenhouse applications where plants tend to prefer nitrate, NO₃ ions; it is best to inoculate the feed tank with nitrogen cycle bacteria to convert NH₄ into NO₃. Such inoculums are readily available in aquarium stores. Inoculation is unnecessary for field applications due to the presence of soil nitrogen cycle bacteria.

The pH of the plant feed tanks (diluted biologically active nutrient solutions) were maintained between 5 and 6.5 as the best (speculated) trade-off to promote root/plant health and microbial

processes. The electrical conductivity (EC),) was targeted to be between 2 and 4 mS/cm; the dissolved oxygen was targeted to be above 5 ppm to encourage aerobic microorganisms and discourage root zone attack by pythium especially true for raft culture. Daily monitoring (pH, temperature and dO) was recorded for both nutrient feed tanks. A 1,000 liter feed tank was primarily used for the culture of fig trees, the other tank (approxiamately3,000 liter) was for tomatoes, tomatillos, hot peppers, purple string beans and passion fruit. Both tanks were oxygenated to maintain the aerobic organisms and to supply oxygen to the root zone.

Hydroponic operations that utilize synthetic fertilizers typically need to acidify their feed tanks; in contrast, the project's hydroponic use of biologically active nutrient solutions needed to constantly raise the pH of its feed tanks using potassium bicarbonate. Microbial activity is believed to be responsible for this acidification. However, the fig feed tank (that utilized the same biologically active nutrient stock solution) for a period of time was opposite in that phosphoric acid was required to maintain the pH setpoint.

The process yields a liquid and a solids product. The bio-nutrient solutions were associated with robust plant biomass and harvest. The solids were used to grow oyster mushrooms and a grower successfully grew portabella mushrooms. Soil remediation professionals are interested in this product since it augments soil carbon without nutrient overloading as may be the case with manure. The final outdoor trial mixed bovine bone chips into the soil-less substrate to encourage robust microorganism growth since the porosity provides protected shelter.

The growth of strawberry cultures was unsuccessful, although partial success was achieve with the growth of Echinacea. To optimize the growth of strawberry cultures, an experienced greenhouse grower would be required.

Appendix D. Engineering Challenges and Considerations

The bioreactor / fermenter was an insulated 1,000 liter plastic bottom hoppered vessel. A robust agitation assembly was mounted above the vessel. Argus, an industrial greenhouse automation system, was used to control pH; pH control involved two pH probes, a guard probe and a control probe. The Argus system also provided data acquisition for pH, temperature and dissolved oxygen. The guard probe was used to check and confirm the measurements of the control probe (from which pH control was based on). Acid or base was slowly added into the fermentation broth complete with a lag time between doses to avoid inducing pH fluctuations.

The presence of grit in the manure (limestone grit for gizzard health and oyster shell fragments for egg shell development) was a challenge. Aggressive agitation of the broth enhances oxygen transfer which also entrains this grit causing abrasive damage to the instruments. Placing the pH probes into plastic sleeves with large perforations prevented damage to a certain degree. Pipe wall segments between the perforations served to reduce broth velocity, thereby causes the grit to settle out before impact with the probes. A double perforated wall may improve this considerably, but the perforations must be large enough to prevent plugging due to the presence of feathers and straw.

The addition of antifoam for the first runs was typically in increments of 5 and 10 mL; these smaller aliquots caused slight but noticeable decreases in broth temperature. As the project progressed, the aliquots of antifoam became larger in order to investigate the process's robustness. These larger additions of antifoam were often too much (especially 200 mL of canola oil) and may have irreversibly impacted the reaction times. A computer controlled dosing (or spraying) of smaller volumes of antifoam into the bioreactor would be of considerable benefit in attaining and maintaining the thermophilic pathogen elimination step.

It would be beneficial to incorporate or develop a shaker mechanism to add powdered lime as a pH base control agent. This would augment the solution's calcium content (and magnesium depending on the grade of lime) and may decrease costs (overtime) since lime is inexpensive compared to the other base agents.

A rough rule of thumb for oxygen delivery "system sizing" is 0.1% lpm relatively pure oxygen per batch volume for approxiamately10% DM. The project is in possession of oxygen and antifoam control instrumentation; however additional funds need to be secured for their installation.

Incorporating a steam kill step may be required to denature bird flu viruses especially if the solutions were to grow poultry feed. Although bird influenza viruses are considered denatured at 75°C, it is a microbiology practice to expose such fluids to 85°C for 5 minutes to denature viruses.

Regulatory and Animal Health Authorities (subject matter experts) are needed to assess the risk(s) and determine mitigation strategies.

Attachments

- 1) Economic Analysis, Data and Assumptions
- 2) DNA Pathogen
- **3**) SOP,s and Control Forms
- 4) Fermentation and Nutrient Graphs- Trials 1 to 14 inclusive
- 5) Nutrient Analysis for Specific pH Agents
- 6) Residual vs Decant Nutrient Bar Graphs
- 7) Loss Due to Flocculation Agent
- 8) Nutrient Stability Bar Graphs

Attachment 1 - Economic Analysis, Data and Assumptions

Attachment 1 Page 148

Aerobic Digestion of Poultry Manure Economic Analysis

Aerobically digested poultry manure can be used indoors and outdoors to grow crops. A net present value model is used to determine whether it makes sense financially to invest in a 1,000 litre bioreactor to produce concentrated bio-nutrient solution. Table 1 shows the investment costs, operating costs and revenues based on three wholesale prices for the bio-nutrient solution.

Table 1 Bioreactor Costs and Returns

Volume of Bioreactor		1,000 Litres	i
Number of batches of nutrient solution produced per year	30	30	30
A). Revenue			and the second
Quantity of concentrated bio-nutrient solution (L/batch)	675	675	675
Wholesale price of concentrated bio-nutrient solution - (\$/L)	\$7.5	\$10.0	\$15.0
Annual Gross Revenue	\$151,875	\$202,500	\$303,750
B). Operating costs per Bioreactor Batch			
Pathogen testing			
E. coli	\$45.0	\$45.0	\$45.0
Salmonella	\$32.0	\$32.0	\$32.0
fecal coliforms	\$32.9	\$32.9	\$32.9
Aerobic plate count	\$22.8	\$22.8	\$22.8
Total pathogen testing per batch	\$132.65	\$132.65	\$132.65
Reagent Costs	1.1.1		
Phosphoric acid 75% Food Grade	\$5.7	\$5.7	\$5.7
Sulphuric acid 66 BE	\$2.1	\$2.1	\$2.1
Nitric acid	\$1.9	\$1.9	\$1.9
Caustic Potash 45 % Solution	\$4.7	\$4.7	\$4.7
Ammonium hydroxide	\$3.0	\$3.0	\$3.0
Ferrous sulphate	\$1.8	\$1.8	\$1.8
Antifoam Silchem	\$22.0	\$22.0	\$22.0
Total Reagent Costs per batch	\$41.08	\$41.08	\$41.08
Total Pathogen and Reagent Costs per Year	\$5.211.9	\$5,211.9	\$5,211.9
Annual Consumable Instrumentation Costs	<i>\$</i> 0,2110	<i>QC</i> ,#1112	<i>QQQQQQQQQQQQQ</i>
Two (2) set of PH probes	\$4 400 0	\$4 400 0	\$4 400 (
Dissolve oxygen	\$1,000.0	\$1,000.0	\$1,000 (
Electrical conductivity	\$1,000.0	\$1,000.0	\$1,000.0
Hand held meter	\$3,500.0	\$3,500.0	\$3,500 (
Annual Consumable Instrumentation Costs	\$9,900.0	\$9,900.0	\$9,900.0
Labour	\$1,825.0	\$1,825.0	\$1,825 (
Total Operating Costs (not including energy and other overhead costs)	\$16.036.0	\$16,036.0	\$16.936.0
D) Cross margin (not including energy and other overhead costs)	\$134 038 1	\$185 563 1	\$286 813 1
E). Canital costs	\$154,750.1	\$105,505.1	\$200,015.1
Bioreactor		신 전 전 관심	
Districtory whomer bottom	\$1.000	\$1,000	\$1.000
Insulation	\$1,000	\$1,000	\$1,000
Agitator	\$7,000	\$7,000	\$7,000
Control system	\$25,000	\$25,000	\$25,000
Ovugen system	\$70,000	\$23,000	\$70,000
Divide a system	\$15,000	\$15,000	\$15,000
From and Owngan control (ontional)	\$30,000	\$30,000	\$30,000
Foan and Oxygen control (optional)	\$30,000	\$30,000	\$50,000
Harvest Equipment	\$45.000	\$45,000	\$45.000
Sciew piess	\$45,000	\$45,000	\$45,000
Dag inters	\$15,000	\$15,000	\$15,000
Nutrient Storage Tenk 5000 L	\$330 \$1.500	\$3.5U \$1.500	\$33C
Transfer and other againment	\$1,500	\$1,500	\$1,500
Paristellia num ud VED	\$12,000	\$12,000	\$12.000
Sump / regimentation nump(s)	\$2,000	\$12,000	\$2,000
Sump / recirculation pump(s)	\$2,000	\$2,000	\$2,000
Total Capital Costs	3224,850	3224,850	\$224,83

Prepared By: Emmanuel Anum Laate, Senior Crop Economist, Economics Section.

Atlachment 1 Page 218

The total capital cost per bioreactor of \$224,850 was assumed to be financed. A 10-year Alberta farm loan with an interest rate of 4.45% was used for the analysis. A summary of the economic indicators from the model are presented in Table 2.

Table 2 Summary of Economic Indicators

Volume of Bioreactor		1,000 Litres	
Wholesale price of concentrated bio-nutrient solution - (\$/L)	\$7.50	\$10.00	\$15.00
Net Present Value (NPV)	\$1,025,657	\$1,505,131	\$2,464,080
Benefit cost ratio (BCR)	3.48	4.65	6.97
Payback if financed	2	2	2
Return on Investment (ROI)	248%	365%	597%

The results show that using a bioreactor to aerobically digest poultry manure and produce concentrated bio-nutrient solution is profitable. The NPV ranged from \$1 million to approximately \$2.5 million and the BCR ranged from 3.48 to 6.97.

Definition of Economic Indicators

Net present value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows. If the NPV >1.0, (positive) then the investment is feasible or it makes sense financially.

Benefit-cost ratio (BCR) is the ratio of discounted benefits to discounted costs expressed in monetary terms. It is an accepted procedure for making go/no-go decisions on projects as compared to alternatives. If the value of BCR > 1, the project or investment is feasible (makes sense financially).

Payback is the length of time it will take for the investment to return its original cost or the number of years required for cash inflows to just equal cash outflows. It indicates the project liquidity rather than profitability. The computation does not address the total profitability of the project, rather it simply calculates how fast a project recovers its cash investment.

Return on Investment (ROI) measures the amount of return on an investment relative to the investment's cost. Because ROI is measured as a percentage, it can be easily compared with returns from other investments, allowing one to measure a variety of types of investments against one another.

Prepared For: Marc Legault, P. Eng. Bio-Industrial Engineer Program Lead, Waste to Nutrients Alberta Agriculture and Forestry

Prepared By: Emmanuel Anum Laate, Senior Crop Economist, Economics Section.

Albe	Agriculture and Forestry	ACIDF	Project E o	mic Assessment Control Cont	dn
Item	Capital Costs for Bioreactor 1,000L	Actual Cost	Optional Costs	Notes	
-	Plastic tank w\ hopper bottom	\$1,000			
2	Insulation	\$1,000			
m	Agitator	\$7,000			
4	Control system	\$25,000	[\$15,000]	the current control system is Argus, greenhouse based control system - recommend a dedicated process control system	
5	Oxygen system	\$70,000			
9	pH control skid	\$15,000		2 of each: peristaltic pump, pH transmitters. plastic tank	
7	Foam control		\$20,000	foam control can be a manual operation but best if	
∞	Oxygen control		000,000	automated - oxygen control can be manual	
	1,000L Bioreactor Capital Costs	\$119,000	\$30,000		1
To	tal 1,000L Bioreactor Capital Costs	\$149,000			0
					1
a na manana a sa	Total Harvest and Support Equipment Capital Costs	\$75,850	from Workshe	et Harvest and Support Equipment	
	Total Capital Costs	\$224,850			
				X	
Page	1 of 1		December	- 2017 1,000 L Bioeactor Capi	Ş le

Attachment 1 page 318

Nutrient Recyc Group				At.	tac	hme	ent l	P	page 418	
ACIDF Project E Dmic Assessment	Notes	based on 30 kg consumption 1 part H ₃ PO ₄ to 4 H ₂ SO ₄ vol/vol	based on 20 kg consumption 1 part H ₃ PO ₄ to 4 H ₂ SO ₄ vol/vol			based on \$1,500 yearly maintenance cost shared over 2 batches per month	based on 2 batches per month sharing the yearly cost given below			
	Actual Cost	\$85.00	\$83.00	\$22.00	\$2.50	\$65.00	\$481.25	\$132.65	\$738.75	
Agriculture and Forestry	Operating Costs per Bioreactor Batch	Acid	Base	Antifoam	Ferrous sulphate	Oxygen	Instrumentation replacement	Pathogen testing	Total cost per batch	
Albei	Item	1	2	m	4	s	9	7		

1,000 L Bioeactor Operational \$

December 2017

Page 1 of 3

ACIDF Revised Jan 2015
6				AT	He	ch	men	t	1	P	e g	е	7	1	8					t	
Group				1, 1																uipmen	£.
Nutrient Recyc				e filled with																Harvest and Support Eq	
Technology Costs		Notes		requires feed pump, bags would be lignocellulosic solids							ideal to feed bag filters									1 of 1	
robic Digesti		Optional Costs																		Page	
Ae		Actual Cost	\$45,000	\$15,000	\$350	\$1,500	\$61,850				\$12,000	\$2,000		S14,000		\$75,850					
Alben Agriculture and Forestry	Capital Costs for Harvest and Support Equipment	Item Harvest Equipment	1 Screw press	2 Bag filters	3 Quarantine Tank 1000 L	4 Nutrient Storage Tank 5000 L	Total Harvest Equipment			Tronefor and other actinment	4 Peristaltic pump w/ VFD	5 Sump / recirculation pump(s)		Transfer and other equipment		Total Support Equipment for	L'UUUL DIOFERCIOF			Harvest and Support Equipment	

								<u>ă</u>	Ana old blue fo	lysis % (a nt denote	ssume wt	/wt) d Label D	ata]				
ents	Odour	Dilution Notes	Dilution Factor	Volume L	Cost	Cost per Liter	z	P ₂ O ₅	PO4	•	K ₂ 0	×	Sulfur S	Calcium	Sodium % wt/wt	Comments	
p	Mild	15 to 30 mL per Liter	33.3 to 66.7	0.91	\$16.99	\$18.67	0.1			0.1	0.5	0.4				See Note 2	
ble, bat guano,	yes moderate	10 mL per Liter	100	1	\$11.99	\$11.99	m	1		0.4	2	1.7		0.5		See Note 2	
nulsion, fulvic elp, etc	yes Foul	10 to 20 mL per Liter	50 to 100	1 kg	\$14.99	~\$15.00	e	2		6.0	S	4.1	2			See Notes	1 and 2
nulsion	yes Foul	1 to 4 tablespoons per gal. 1 tbsp = 14.787 mL; 1 US Gal.= 3.79 L	64 to 256	0.946	\$13.99	\$14.79	υ	1		0.4	1	0.8				See Notes	1 and 2
r Manure ite	No		50 to 60				0.6 to 0.3		0.55 to 0.1	0.2 to 0.03		0.5 to 0.2	1.2 to 0.1	0.23 to 0.1	0.06 to 0.03	biologically readily-ava	/ active 10 ⁹ organisı iilable nutrients
	Notes 1 2	Fish, unprocessed manure Fish, unprocessed manure	e based ferti e (possibly n	ilizers typicall ¹ 1arine plants)	ly need to be) based fertil	: microbially izers typical	r mineraliz	ed to yiels sodium	l plant av	ailable nu	trients						
						č	C volue	1									
	Primary Ingredients Seaweed Seaweed Vegetable, bat guano, etc. Fish emulsion Fish emulsion digestate digestate	Primary Odour Ingredients Odour Seaweed Mild Seaweed Mild Vegetable, bat guano, ves etc. moderate Fish emulsion, fulvic ves acid, kelp, etc Yes digestate No digestate No fish 2	Primary Ingredients Odour Dilution Notes Seaweed Mild 15 to 30 mL per Liter Seaweed Mild 15 to 30 mL per Liter Vegetable, bat guano, Vegetable, bat guano, tetc. yes 10 mL per Liter Vegetable, bat guano, Vegetable, bat guano, Vegetable, bat guano, Ves 10 to 20 mL per Liter etc. Foul 10 to 20 mL per Liter add, kelp, etc Foul 10 to 21 mb per Liter Poultry Manure No 10 to 20 mL per Liter Moultry Manure No 10 to 20 mL per Liter Poultry Manure No 10 to 20 mL per Liter 1 Foul 10 to 20 mL per Liter 2 Fish, unprocessed manure 10 to 20 mL per Liter	Primary Ingredients Odour Dilution Notes Dilution Receins Odour Dilution Notes Dilution Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 Vegetable, bat guano, etc. yes 10 mL per Liter 33.3 to 66.7 Vegetable, bat guano, etc. yes 10 nL per Liter 50 to 100 Fish emulsion, fulvic yes 11 to 4 tablespoons per 1 to 4 tablespoons per 50 to 100 Fish emulsion Foul 1 US Gal.= 3.79 L 50 to 60 Motes No 1 US Gal.= 3.79 L 50 to 60 Motes No Fish, unprocessed manure based ferti 1 Fish, unprocessed manure (possib) m	Primary Ingredients Odour Dilution Notes Dilution Volume Reredients Odour Dilution Notes Dilution Volume Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 0.91 Vegetable, bat guano, return ves moterate 10 mL per Liter 100 1 Vegetable, bat guano, moterate ves moterate 10 to 20 mL per Liter 3.3.3 to 66.7 0.946 Fish emulsion, fulvic ves gato 11 to 4 tablespoons per tites = 14.787 mL; Fish emulsion 50 to 60 14g Fish emulsion ves gata = 3.79 L; Fish, unprocessed manure based fertilizers typicall 1 1 Notes 1 1 50 to 60 0.946 So to 60 50 to 60 50 to 60 150 Poultry Manure No 50 to 60 50 to 60 Poultry Manure No 50 to 60 50 to 60	Primary Ingredients Odour Dilution Notes Dilution Volume Cost Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 0.91 315.99 Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 0.91 315.99 Vegetable, Jat guano, etc. yes 10 mL per Liter 100 1 311.99 State mulsion, fulvic yes 10 to 20 mL per Liter 50 to 100 1 kg 313.99 etc. yes 10 to 20 mL per Liter 50 to 100 1 kg 313.99 etc. felt emulsion, medeane yes 10 to 20 mL per Liter 50 to 60 313.99 etc. felt emulsion yes gal. 64 to 256 0.946 313.99 bolutry Manure No 10 So 10 60 1 kgs = 14.787 mL; 64 to 256 0.946 313.99 figestate No 10 So 10 60 1 kgs = 14.787 mL; 64 to 256 0.946 313.99 figestate No 50 to 60 1 kgs = 14.787 mL; 64 to 256 0.946 313.99 figestate No 10 So 10 60 1 So 10 60 26 50 to 60 26 50 to 60 50 to 60 50 to 60 figestate No 50	Primary Ingredients Odour Dilution Notes Dilution Volume Cost Cost pri- liter Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 0.9 l \$16.99 \$13.69 Seaweed Mild 15 to 30 mL per Liter 100 1 \$11.99 \$11.90 Vegetable, bat guano, etc. ves 10 mL per Liter 100 1 \$14.99 \$13.500 State ves 10 mL per Liter 50 to 100 1.4g \$13.99 \$13.500 State ves 10 to 20 mL per Liter 50 to 100 1.4g \$13.99 \$13.750 State Ves 10 to 20 mL per Liter 50 to 100 1.4g \$14.73 \$14.73 State Ves 10 to 20 mL per Liter 50 to 60 \$14.99 \$14.73 State Ves 10 to 20 mL per Liter 50 to 60 \$14.99 \$14.73 Peulty Manure No 10 to 50 mL per Liter 50 to 60 \$14.99 \$14.73 Poulty Manure No 10 to 50 mL per Liter 50 to 60 \$14.60 \$14.73 Poulty Manure No 10 to 50 mL per Liter 50 to 60 \$14.99 \$14.73 Poulty Manure No 10 to 50 to 60 \$14.85<	Primary Interellents Odour Dilution Notes Dilution Volume Cost Cost Par N Resedent Mild 15 to 30 mL per Liter 33.3 to 66.7 0.3 t 516.39 518.67 0.1 Seaweed Mild 15 to 30 mL per Liter 33.3 to 66.7 0.3 t 511.39 3 3 Vegetable, bat guano, montens. vess. points 10 mL per Liter 300 1 511.39 511.39 3 Stehemulsion, fulvic Foul 10 to 20 mL per Liter 50 to 100 1 kg 514.79 3 Git, kep, etc vess 10 to 4 tablespoors per Fish emulsion 100 1 8 514.79 5 Out, kep, etc yes 10 to 20 mL per Liter 50 to 60 0.946 513.79 5 Fish emulsion yes 10.5 cal.= 3.79 L 5 50.50 3 Manure No 10.5 cal.= 3.79 L 5 5 5 Fish emulsion Yes 10.6 50 0.946 5 5 Manure No 10.5 60 0.946 5 0.3 Mostate No 10.5 60 0.946 5 0.3 Altendisin Foul 10.5 60 0.946<	Implicient in the set of t	Financial Financial Primary Cotour Dilution Notes Dilution Volume Cost Easter N Polo Polo Polo Seaveed Mild 15 to 30 mL per Liter 33.310 031 \$16.39 \$18.67 0.1 Polo Polo	Primury Ingredients Color Dilution Notes Dilution Volume Cost Prim N Readered Mid 15 to 30 mL per Liter 33.3 to 66.7 0.91 \$15.0 3 \$16.9 \$10.4 \$10.9 \$10.4 \$10.4 Serveed Mid 15 to 30 mL per Liter 33.3 to 66.7 0.91 \$10.9 \$11.99 \$13.93 \$2 \$0.4 Vegenble, hat guano. wess 10 mL per Liter 33.3 to 66.7 0.31 \$13.99 \$13.99 \$13.99 \$13.99 \$0.4 \$0.4 Vegenble, hat guano. wess 10 mL per Liter 100 1 \$13.99 \$13.99 \$21.99 \$0.4 Vegenble, hat guano. wess 10 mL per Liter 50.0 14.8 \$24.39 \$23.93 \$0.3 Goal, kein, etc wess 10 mL per Liter 50.0 14.8 \$23.93 \$0.3 \$0.3 Liter wess 10.60 14.8 \$24.39 \$23.4 \$0.3 \$0.3 Rout west fould	Frimary Interestingtion Cost Control Dibution Cost Cost Prov. Transvist K (assume vist) Rependents Odour Inuton Notes Exerce 1 Volume Cost Prov. Prov.	Minimum preprinting Model Dimension preprinting Manual preprinting Manual preprinti	Time view of the field	The matrice of the properties o	Analysis Kisamawey And Therefore Prime Uncertendiation Color Dubtion Dubtion Control Prime Number (second method Analysis Kisamawey Modilization Second Mild 15to 30 mt. per tiber Vum Cost R Po, Po P Soft P </td <td>Antimized and state of the construction of the properties of the construction of the properties of the construction of the properties of the properited of the properties of the properties of the properties of th</td>	Antimized and state of the construction of the properties of the construction of the properties of the construction of the properties of the properited of the properties of the properties of the properties of th

Attachment 2 – DNA Pathogen Scan

Date

Thursday October 29, 2015

LABORATORY TESTING OF MATERIALS

Background

To

Twice this past season, materials in use at the nursery were sampled to examine at a commercial laboratory for presence of root rot pathogens.

The samples were examined using DNA scanning, placing the retrieved DNA against a bank of known "markers" for multiple plant pathogens. It is currently the most advanced technique for this work and only available at Guelph University in Ontario.

The laboratory report returns a rating of 0 (none detected) up to 10 (high level) for 30 different plant pathogens. More information at <u>http://www.guelphlabservices.com/AFL/Service Growers.aspx</u> (go to "Fungi").

Results for "Chicken Digest"

Sample collected by early October. Results: No detection for all pathogens in the scanning.

Results for "Manure"

Sample collected in late May . This was either leftover materials after potting trees into Air Pots, or the manure part of the mix (the information given us was unclear).

Results:

Moderate levels of Fusarium and Pythium, High levels of Pythium ultimum.

Comments:

The material used for potting of trees arrived with *Fusarium* and *Pythium*. This indicates material of poor quality, or poor composting, or infection from raw ingredients.

Pythium is a soil pathogen that infects plants under stress and causes root rot and stem rot. *Pythium* is found commonly in nature. A potting mix with this pathogen is a major concern for greenhouse production and during propagation. Larger plants can sustain a small amount of root rot infection.

It would be prudent to use "clean" materials for the potting mix in the future.

FINAL Report Submission# Reported: 2015-Jun-02

Submitted By:

DNA Multiscan

۰.

 Date Authorized:
 2015-Jun-02 15:29

 Sample ID Client Sample ID Specimen type Sampling date/time
 Soll

 DNA Multiscan
 Results Attached

Test method(s): PDC-114

Supervisor: Shannon Shan PhD, Agriculture and Food Laboratory 519 823 1268 ext. 57227 xshan@uoguelph.ca

This report may not be reproduced except in full wilhout written approval by Laboratory Services. These test results pertain only to the specimens tested.

Agriculture and Food Laboratory - 95 Stone Rd West, Guelph, ON N1H 8J7 - www.guelphlabservices.com

Page 1 of 2 Printed: 2015-Jun-02

FINAL Report

Submission# Reported:

Basic Soil Scan Report

June 02 2015

LSD Sample Number: Submitter ID: Report Date:

Target Organism	Value	Result	1 to 10	Commen	ts
Botrylis cinerea	0	Not Detected	0		
Fusarium spp.	2	Motierate Levels	6		
F. oxysporum	0	Not Detected	0	Charles and a state	
F, solani	0	Not Detected	0		and a suff by a disc yes taken a substantial yes
Olpidium bornovanus	0	Not Detected	0	Later and the state of	
O, brassicae	0	Not Detected	0		
O. virulentus	0.	Not Detected	0		Activity of the State of the
Phylophthora spp.	0	Not Detected	0		
P. cactorum	0	Not Detected	0		
P. capsici	0	Not Detected	0		
P. clnnamomi	0	Not Detected	0		and the second sec
P. cryptogea	0	Not Detected	0		and ball of the part of the ball of the ball
P. drechsleri	0	Not Detected	0		
P. fragariae	0	Not Detected	0		
P. Infestans	0	Not Detected	0	Constant Street	
P. nicotianae	0	Not Detected	0	ALCON OCCUPATION AND	
Pythium spp.	2	Moderate Levels	6		
P. aphanidermalum	0	Not Detected	0		
P, dissolocum	0	Not Detected	0		and the second secon
P. Irregulare	0	Not Detected	0		and the second
P. polymastum	0	Not Detected	0		
P. sylvaticum	2	Moderate Levels	6		and the base of the base of the second second
P. ultimum	3	High Levels	10		
Rhizoctonia solani	0	Not Detected	0		and a mini a set of a second planet based
Sclerotinia spp.	0	Not Detected	0		
Thielaviopsis basicola	0	Not Detected	0		
Verticillium spp.	0	Not Detected	0		
V. albo-alrum	0	Not Detected	0		
V. dahllae	0	Not Detected	0		and the state of the state of the
V. dahllae (var longisporum)	0	Not Detected	0		
			Legend		
No. of Concession, Name of			0	0	Not Detected
Super	rvisor:		1	1,2,3	Low Levels
			2	4,6,6	Moderate Levels
			3	7,8,9,10	High Levels

Agriculture and Food Laboratory - 95 Stone Rd West, Guelph, ON N1H 8J7 - www.guelphlabservices.com

Page 2 of 2 Printed: 2015-Jun-02

Agriculture and Food Laboratory

Submission# Reported:

FINAL Report

Submitted By:

Owner:

DNA Multiscan

Date Authorized:

2015-Oct-22 14:57

Sample ID Client Sample ID Specimen lype Sampling date/time	CHICKEN DIGESTATE Liquid Sample
DNA Multiscan	Results Attached

Test method(s): PDC-114

Supervisor: Shannon Shan PhD, Agriculture and Food Laboratory 519 823 1268 ext. 57227 xshan@uoguelph.ca

This report may not be reproduced except in full without written approval by Laboratory Services, These test resulfs pertain only to the specimens tested.

Agriculture and Food Laboratory - 95 Stone Rd West, Guelph, ON N1H 8J7 - www.guelphlabservices.com

Page 1 of 2 Printed: 2015-Oct-22

FINAL Report

Submission# Reported:

DNA Water Scan Report

LSD Sample Number: Submitter ID: Chicken digestate Report Date: Oct 22 2015

Target Organism	Value	Result	1 to 10	Comments
Botrylis cinerea	0	Not Detected	0	
Fusadum spp.	0	Not Detected	0	
F. oxysporum	0	Not Detected	0	
F. solani	0	Not Detected	0	
Olpidium bornovanus	0	Not Detected	0	
O. brassicae	0	Not Detected	0	
O. virulentus	0	Not Detected	0	
Phytophthora spp.	0	Not Detected	0	
P. cactorum	0	Not Detected	0	
P. capsici	0	Not Detected	0	
P. cinnamomi	0	Not Detected	0	
P. cryptogea	0	Not Detected	0	
P. drechsleri	0	Not Detected	0	
P. fragariae	0	Not Detected	0	
P. Infestans	0	Not Detected	0	
P. nicotianao	0	Not Detected	0	
Pythlum spp.	0	Not Detected	0	the state of the s
P. aphanldermatum	0	Not Detected	0	
P. dissotocum	0	Not Detected	0	
P. Irregulare	0	Not Detected	0	
P. polymastum	0	Not Detected	0	
P. sylvalicum	0	Not Detected	0	
P. ultimum	0	Not Detected	0	and a stand of the stand of the stand of the
Rhizoctonia solani	0	Not Detected	0	
Sclerotinia spp.	0	Not Detected	0	
Thielaviopsis basicola	0	Not Detected	0	
Verticillium spp.	0	Not Detected	0	
V. albo-atrum	0	Not Detected	0	
V. dahilae	0	Not Detected	0	
V. dahilae (var longisporum)	0	Not Detected	0	

Supervisor: Shannon Shan PhD, AFL, xshan@uoguelph.ca

0 0 Not Detected 1 1,2,3 Low Levels 2 4,5.8 Moderate Level 2 7,00,40 Moderate Level

Legend

Agriculture and Food Laboratory - 95 Stone Rd West, Guelph, ON N1H 8J7 - www.guelphlabservices.com

Page 2 of 2 Printed: 2015-Oct-22

Attachment 3 – SOP's and Control Forms

)	R	Nutrien lecyclin Group	t Ig	Standard Operating F Bioreactor	Procedure	Food and Bio- Processing Division
	W E M	r itten B rik Berge arc Lega	by: en ult	Approved By:	Page 1 of 9	Rev 17 Nov. 2015
	1.0	APPLI	CATIC	DN		
		1.1	To pr	ovide a procedure for the operation of gr	eenhouse #11 Biorea	ctor at CDC North.
	2.0	INTRO	DUCT	ION		
		2.1	The C plant-	DC North bioreactor breaks down poult available nutrients by culturing uncharac	ry manure (i.e. microb terized bacterial spec	bial mineralization) into ies.
	3.0	SAFE1	Y WA	RNINGS and PRECAUTIONS		
		3.1	The b other	ioreactor aerobically digests animal ma potential pathogens are associated v	nures; <i>E. coli, Salmo</i> vith manure and are	o <i>nella</i> , influenza, and a health hazard.
			3.1.1	It is important to minimize skin exp (inhalation, eye contact, open wounds)	oosure and other pa	thways into the body
	3.2 The bioreactor is dosed with strong acids and stron always wear the proper PPE to minimize exposure.					fore, it is important to
			3.2.1 3.2.2 3.2.3	Always have MSDS on hand or readily Know where the eyewash stations are Ensure and test a water-pressurized h	be available. ose is nearby	
		3.3	If the	dissolved oxygen level in the bioreactor	falls - the process may	y become anaerobic:
			3.3.1 3.3.2	If the bioreactor turns anaerobic, stro eggs) will be produced as well as meth A chemical respirator is recommended	ng smells (sulphur ba nane gas which is a fin I when cleaning the bio	ased smells like rotten e and health hazard. oreactor.
		3.4	The b avoid	ioreactor is situated near many control k spraying water directly on electrical devi	ooxes, electrical outlet ces when cleaning the	s, and breaker panels; e bioreactor.
		3.5	The b aggre biore	ioreactor is fitted with an agitator compl ssively rotating within the tank, avoid pl actor when the agitator is in motion.	eted with submerged acing any body parts	blades; this agitator is s or equipment in the
	CAUI	TION: To	avoid	entanglement with the agitator do not w	ear clothing with draw	strings or any other

Attachment 3 page 2 13

Nutrient Recycling Group	Standard Opera Biore	nting Procedure actor	Food and Bio- Processing Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 2 of 9	Rev 17 Nov. 2015

- 4.2 Steel toes boots (preferred), close toed shoes are mandatory
- 4.3 Long pants,
- 4.4 Safety glasses, a face shield is mandatory when working with pH control agents
- 4.5 Greenhouse coat (mandatory when working with tools or chemicals),
- 4.6 Dust mask [particulate and aerosol protection are available]
- 4.7 Chemical respirator (when cleaning the bioreactor),
- 4.8 Full Tyvek suit with hood (recommended while filling the bioreactor).

5.0 REQUIRED DOCUMENTATION

- 5.1 Bioreactor Control Form
- 5.2 Bioreactor Loading Control Form
- 5.3 Rosemount Analytical Transmitter and pH Calibration SOP and Control Form
- 5.4 Fermentation Run Log
- 5.5 Batch Record

6.0 **RESPONSIBILITIES**

6.1 It is the Responsibility of the Technologist:

- 6.1.1 To perform the daily checklist and routine analysis.
 - 6.1.1.1 Includes the manual addition of any necessary reagents
- 6.1.2 To wear the proper PPE at all times.
- 6.1.3 To keep all PPE, lab supplies, equipment, chemicals, and reagents in supply.
- 6.1.4 To record all data and observations legibly in the appropriate note book(s).
- 6.1.5 To report any malfunctions or abnormal observations

6.2 It is the Responsibility of the Supervisor / Employer:

- 6.2.1 To determine when the bioreactor should be decanted or cleaned.
- 6.2.2 To address and fix any malfunctions or mechanical breakdowns.
- 6.2.3 To remotely monitor the bioreactor using mobile TeamViewer

7.0 DEFINITIONS

- 7.1 App: Denotes software application typically for 'smart phones'
- 7.2 Argus System: A greenhouse control and monitoring system See Appendix for details
- **7.3 TeamViewer:** The smartphone App / computer program used to remotely access and monitor Argus (See TeamViewer SOP).
- 7.4 Decant: The removal of the top fluid layer of the bioreactor without disturbing the settled sludge or sediment.

		Attachment 3	page 3 1/3	3		
F	Nutrient Recycling Group	Standard Operating P Bioreactor	rocedure	Food and Bio- Processing Division		
E M	/ritten By: rik Bergen arc Legault	Approved By:	Page 3 of 9	Rev 17 Nov. 2015		
7.5	PPE:	Personal Protective Equipme	ent needed to work safe	ely work		
7.6	KH:	Carbonate Hardness; this in alkalinity means higher carbo capacity. This ultimately mea pH swings.	dicates the alkalinity of onates which results in ons that there is less like	a solution. Higher higher buffering elihood of dramatic		
7.7	GH:	Stands General Hardness wi magnesium and calcium con bind to counter ions thus fave bound hydrogen ions in solu	nich is the measuremer centrations. Since thes pring lower pH because ion.	nt of a solutions e are cations, they e there are less		
7.8	Mother Liqu	or The residual fermentation bro incorporated into the next ba	oth that is left in the bio tch.	reactor to be		
7.9	NH₃/NH₄⁺:	This property is important because it assesses the primary rate of ammonification. The higher the ammonium concentration, the faster the metabolic breakdown of manure. Ammonium is a much more stable form of nitrogen storage and is less likely to go through a denitrification process. Values greater than <i>5000 ppm in the bioreactor are preferred, however, 10, 000 ppm is typically the target value.</i>				
7.10	NO3 ^{-/} NO2 ⁻ :	Must be at a much lower con less stable form for nitrogen The <i>target value is 0 ppm.</i>	centration than ammon storage as it can go thr	ium; this is a much ough denitrification.		
7.11	pH:	The pKa of ammonia is abou lower than 7 to strongly favou resulting in irreversible nutrie	t 9, this means that the ur ammonium and avoid nt loss.	target pH must be d denitrification		
7.12	рКа	Acid dissociation constant qu solution	antitative measure of a	n acid's strength		
7.13	Conductivit	 The measurement of electrol solutions ability to carry an e estimate of how concentrated 7.13.1 drinking water is I 	ytic or specific conduct lectric charge. This give d a solution is; between 0.05 and 0.5m	ance which is a es an general S /cm.		
7.14	Dissolved O	xygen: Dissolved oxygen, dO, is the bioreactor and stock tanks mu anaerobic conditions; howeve oxygen the better to ensure c	amount of oxygen prese ist be 5 ppm dO ₂ at mi r, the higher the concer omplete aerobic digesti	ent in solution. The inimum to avoid ntration of dissolved on of the manure		
8.0	PROCEDUR	E				

Rev 17 Nov. 2015

Ċ

 \bigcirc

1			
Nutrient Recycling Group	Standard Ope Bior	rating Procedure reactor	Food and Bio- Processing Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 4 of 9	Rev 17 Nov. 2015

8.1 Bioreactor Initialization/Start-up

8.1.1 When required the bioreactor must be thoroughly cleaned with no sediment on tank walls or the floor.

Attachment 3 page 4 1 13

- 8.1.1.1 The residual amount of Mother Liquor must be calculated.
- 8.1.2 Fill the bioreactor with approximately 500 L of water (50% of the tank volume).
 - 8.1.2.1 A measuring tape is used to estimate tank volume See Bioreactor Volume Chart for details
- **8.1.3** Allow the bioreactor to 'acclimatize' overnight with the agitator operating in order to off gas chlorine and attain ambient temperature.
- 8.1.4 pH Probe Calibration
 - 8.1.4.1 Calibrate the pH probes as per the calibration SOP
 - 8.1.4.2 Place all spargers and probes into the bioreactor; [oxygen, both pH]
- 8.1.5 "Turn on" the agitator making sure it is spinning clockwise.
- 8.1.6 Prime pH agent pumps

NOTE: Prime base pump first then the acid pump to ensure the bioreactor is acidic prior to loading.

8.1.6.1 At the Local Argus control panel place acid and base pumps to 'OFF'

8.1.6.2 Weigh the pH agent containers – place into their respective tank

8.1.6.3 At the Local Argus control panel place base pump to 'ON'

8.1.6.3.1 Continue till base (with no air bubbles) enters the bioreactor

8.1.6.3.2 At Local Panel place base pump to 'OFF'

8.1.6.4 Repeat steps 8.1.3.1 to 8.1.3.3 inclusive for acid pump assembly.

8.1.7 Confirm bioreactor is acidic if not use the acid pump to dose acid

NOTE: Pumps are left in 'OFF' setting till the manure is loaded into the bioreactor

8.1.8 Set the oxygen pressure regulator to between 30-40 psi.

Attachment 3 page 5/13

Nutrient Recycling Group	Standard Opera Biorea	ting Procedure actor	Food and Bio- Processing Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 5 of 9	Rev 17 Nov. 2015

8.1.8.1 The bioreactor dO should be at least 20 mg/L (20 ppm).

- 8.1.9 Place pH dosing pumps to AUTO for automatic pH control
- 8.1.10 Using the bioreactor loading record log to document all activities
 - 8.1.10.1 Weigh and record the weight of each pail of manure without the lid
 - 8.1.10.2 Remove a dry weight sample as per the bioreactor loading record log
 - 8.1.10.3 Empty the pail into the bioreactor
 - 8.1.10.4 Weigh and record the weight of each empty pail
 - 8.1.10.5 Repeat steps 8.1.10.1 to 8.1.10.4 for all pails.
- **8.1.11** Closely monitor the bioreactor for the first 24 hours; there may be pH swings, over foaming, and oxygen level variations.

8.1.11.1 If the bioreactor is over foaming, add a surfactant as per batch record.

- **8.1.11.2** If the pH is not responding fast enough to the dosing pumps, you may have to manually add a pH agent.
- 8.1.11.3 The Batch Record will state the target
- 8.1.11.4 If the oxygen level gets below 5 mg/L (5ppm), increase the pressure gradually to 50 psi.
- 8.1.12 SAMPLE the Bioreactor as per the Batch Record

Note: The bioreactor "typically runs" for 2 to 3 weeks before it is decanted into a stock tank

- 8.2 Bioreactor Daily Checklist
 - 8.2.1 Make sure the bioreactor is not over foaming or has a high foam level.8.2.1.1 If it does, add a surfactant as the Batch Record.
 - **8.2.1.2** The foam level should dissipate within minutes, if it does not; add an additional surfactant aliquot until it dissipates.

Note: The oxygen level will temporarily drop when surfactant is added.

- 8.2.2 When required Check water level using a measuring tape to measure volume
 - **8.2.2.1** If the water level is too low (below 50% tank volume), add water until it is at the approximate correct volume.

Attachment 3 page 6 1 13

Nutrient Recycling Group	Standard Oper Biore	ating Procedure eactor	Food and Bio- Processing Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 6 of 9	Rev 17 Nov. 2015

- 8.2.3 Check the acid and base pails are at least 1/3 full.
 - 8.2.3.1 If they are not add reagent so as Not to Lose pump prime
- **8.2.4** pH Control Boxes are beside the bioreactor. The values displayed on the control boxes should be within range of the hand held meters.
 - **8.2.4.1** If the boxes read "- -. -" or "9999" values, it means there is a problem with the probes. Inform supervisor immediately.
- **8.2.5** Oxygen Lines: Makes sure that there are no leaks from the oxygen tank to the bioreactor.
 - **8.2.5.1** Make sure that the oxygen tank is set on an appropriate level at least 20 psi, but depends on the bioreactor oxygen level.
- **8.2.6** If required: Take samples for the biomass assay and start the assay (see Biomass and percent solids SOP).
- 8.2.7 Fill a 500 mL beaker with sample and perform the Routine analysis tests Record ALL data on to the Fermentation Run Log
 - **8.2.7.1** Dissolved oxygen, dO, level using the appropriate meter **8.2.7.1.1** Should be at least 5 mg/L (5 ppm).
 - **8.2.7.2** The electrical conductivity and pH using the appropriate meter (see EC and pH probe SOP).
 - 8.2.7.2.1 The pH should be '+' or '-'0.3 pH units from the setpoint
 - **8.2.7.2.2** If pH is lower than allowed, add 100mL of ammonium hydroxide every 30 min until the pH reaches desired range.
 - **8.2.7.2.3** If the pH is greater than target range, add 100 mL of phosphoric acid every 30 min until the pH reaches desired range.
- **NOTE:** If *pH* was not within target range inspect the dosing pumps and the Argus system to determine cause of *pH* control failure.
 - 8.2.7.3 The temperature can be checked using the hand held EC/pH meter.

NOTE: If the bioreactor is not above room temperature, contact supervisor immediately

8.2.7.4 Test nitrate/ nitrite levels (NO₂⁻ / NO₃⁻, general hardness (GH), carbonate hardness (KH), and ammonium / ammonia levels (NH₃ / NH₄⁺). (See Colorimetric Indicator SOP).

Attachment 3 page 7113

Nutrient Recvcling	Standard Ope	rating Procedure	Food and Bio- Processing
Group	Bio	reactor	Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 7 of 9	Rev 17 Nov. 2015

8.2.7.4.1 The ideal nitrate and nitrite levels should be 0 ppm, but they should be at least 2 orders of magnitude lower than the ammonium / ammonia levels.

- **8.2.7.5** All of these tests can be done while waiting for the biomass / percent solids filtration step to finish.
- **8.2.8** Record all information and all observations into the designated bioreactor data sheet including the date and time.
- **8.2.9** Cross reference current temperature readings, pH readings, and oxygen level readings with Argus to validate the current stats of the bioreactor.

8.3 Decanting the Bioreactor

- 8.3.1 Turn off the agitator, oxygen flow, and dosing pumps (placed in 'OFF').
- 8.3.2 Wait at least overnight
- **8.3.3** Place a sump pump just under the surface of the water level and the connecting hose into the tank you wish to decant into.
- **8.3.4** Plug in the pump and slowly lower the pump into the bioreactor so the suction is always just beneath the water level.
 - **8.3.4.1** The fluid should be a light to medium brown color with a watery consistency.
- **8.3.5** *STOP* decanting when the fluid starts to become a dark brown color and the consistency changes to a thicker sandy or sludgy consistency.

NOTE: Decanting is always done with 2 people present; one person focusing on lowering the pump, and the other focusing on the fluid coming out of the hose.

8.4 Cleaning the Bioreactor

- 8.4.1 Turn off the bioreactor agitator and dosing pumps
- **8.4.2** Take the pH probes out of the bioreactor, gently clean them with a squirt bottle and swipes.

^{8.2.7.4.2} The ideal ammonia / ammonium levels are at least 5000 ppm but they should be at least 2 orders of magnitude about the nitrate / nitrite levels.

Attachment 3 page 8 1 13

Nutrient Recycling	Standard Operation	Food and Bio- Processing	
Group	Bioreac	tor	Division
Written By: Erik Bergen Marc Legault	Approved By:	Page 8 of 9	Rev 17 Nov. 2015

8.4.2.1 Never touch the membrane or spray directly on it.

- **8.4.2.2** After they are cleaned, place the probes in a 5M potassium chloride (KCI) buffer or pH Buffer 4 Standard solution.
- **8.4.3** Remove out all other probes and oxygen spargers.

8.4.3.1 Turn off the oxygen 12- 24 hours before you clean / decant the tank.

- **8.4.4** Decant the bioreactor as described in the previous section.
- **8.4.5** Then the solution in the bioreactor becomes thick, constantly agitate and break up the sediment using a water jet while decanting.
 - 8.4.5.1 This step is best done with 3 people.
 - **8.4.5.2** As the solution gets thicker, the pump with start to clog.

8.4.5.2.1 Keep adding water to dilute the sediment

8.4.6 Once the volume level is less than 40 L, vacuum the remaining sediment and liquid out.

9.0 TRAINING REQUIREMENTS

- 9.1 Basic understanding of smartphones and windows operating system.
- 9.2 Proper bioreactor monitoring and routine analysis.
- 9.3 WHMIS.
- 9.4 Standard First Aid.

10.0 REFERENCES/RELATED SOPS

- **10.1** Bioreactor Design for Chemical Engineers, Gregory T. Benz, Benz Technology International Inc. (PDF Digital Copy Available).
- 10.2 Bioreactor Operations (PDF Digital Copy Available).
- 10.3 TeamViewer SOP
- 10.4 Argus SOP
- 10.5 Dilutions SOP
- 10.6 Mixing Solutions SOP
- 10.7 Colorimetric Indicator SOP
- 10.8 pH and Conductivity Meter SOP
- 10.9 Biomass and percent solids SOP

11.0 APPENDIX

Attachment 3 page 9 1 13

Nutrient Recycling Group	Standard Opera	Food and Bio- Processing Division	
Written By: Erik Bergen Marc Legault	Approved By:	Page 9 of 9	Rev 17 Nov. 2015

11.1 Argus System

11.1.1 The Argus System is a greenhouse control and data acquisition.

- **11.1.2** For the purposes of the bioreactor, Argus monitors the dissolved oxygen level, monitors and controls the pH level, and monitors the temperature.
 - **11.1.2.1** The pH control is regulated by 2 probes, once guard probe that acts as a reference, and once control probe that tells the system to increase to decrease the pH of the system.
 - **11.1.2.1.1** The information from these probes is stored in the Argus system software and should be monitored daily.
 - **11.1.2.1.2** The probes should also be inspected on a weekly basis for biofilms and sediments blocking the membrane.
- **11.1.3** The Argus system is important for two main purposes:
 - **11.1.3.1** The storing of important analytical data of the greenhouse and bioreactor systems and graphing this data to see trends used for process optimization.
 - **11.1.3.2** The controlling of various functions such as pH, foam levels, and possibly automatic feeding of the bioreactor with manure and other nutrients, and possibly the controlling of the bioreactor temperature.

11.1.4 See the Argus SOP for specific instructions on how to operate the system.

11.1.4.1 For any assistance with the Argus system, call the Argus contact Jeff @ 1-888-667-2091 Ext. 115.

12.0 REVISION HISTORY

Version	Effective Date	Summary of Change	

Attechment 3 pog	e 10	113	
------------------	------	-----	--

Alberta Agriculture and Forestry

Bioreactor Control Form **Nutrient Recycling Group**

1.0 APPLICATION

To Provide a Documentation Form to Capture all Setup Data for the Operation of Greenhouse #11 Bioreactor at CDC North.

2.0 FERMENTATION DOCUMENTATION

2.1 Trial	Date Time
2.2	Objective(s)
Trial pH O _{xvgen}	setpoint Ipm
3.0	PRE-FERMENTATION CHECKLIST
3.1	Adequate reagent supplies:
3.1.1	Acid for pH control Acid Type
3.1.2	Base for pH control Base Type
3.1.3	pH standards for pH calibration Yes / No Type
3.1.4	Surfactant (anti-foam agent) Yes / No Type
3.1.5	Sufficient feedstock (manure or other) Yes / No
3.1.6	Oxygen Purity
3.2	Bioreactor Preparation
3.2.1	Estimate of Residual Mother Liquor:
3.2.2	Initial Bioreactor Volume (typically allowed to warm up overnight):
3.2.3	All Probes Removed and Cleaned: Yes / No
3.2.4	Oxygen Sparger(s) Removed and Cleaned: Yes / No
3.3	Reagent Note: If Lid is Present for the Weight
3.3.1	Weight of Acid Before the Run:
3.3.2	Weight of Acid after the Run:
3.3.3	Acid used kg

Page 1 of 2

ACIDF Project \\GOA\MyDocs\M\marc.legault\old_x_drive\1 CDC North\Templates\

Bioreactor Control Form rev 31 Mar. 2016 .xlsxBioreactor Control Form rev 31 Mar. 2016 .xlsxControl Form Loading

Alberta Agriculture and Forestry Bioreactor

Nutrient Recycling Group

	Control F	orm .										
3.3.4	Weight of Base Before the Run:	kg										
3.3.5	Weight of Base after the Run:	kg										
3.3.6	Base used	kg										
3.4 (Calibration of pH Control and Guard P	robes										
3.4.1	8.4.1 Control pH probe slope mV/pHOffset											
3.4.2	Guard pH probe slope mV/pH_	OffsetmV/pH										
Slope	e must be within 59.1 and 47 mV per p	H unit or probe has failed.										
3.4.3	Standardize Probes to Hand Held											
Immerse hand-held probe in bioreactor allow to reach steady state i.e. equal temperature values with guard and control probes 3.4.4 Guard, Control Probes Standardized to Hand-held pH value wh immersed in bioreactor												
Охуд	en Sparger is nearest to the Acid / Ba	se Outlets										
dO pr	obe is above tank floor to avoid fouli	ng due to sediment.										
3.5	All Probes Are Installed:	Yes / No										
3.6	Argus is Recording Data	Yes / No										
3.6.1	Argus pH Setpoint Bandw	idth										
Prime	Base Pump First Then Acid Pump											
3.7.1	Dosing Pumps Primed	Yes / No										
3.7.2	If required initial acid aliquot prior to loading											
3.7.3	Bioreactor Loading Control Form Completed	Yes / No [Field Data Entries]										
3.8	Dosing Pumps Returned to 'Auto'	Yes / No										
3.9	Bioreactor Loading											
3.9.1	All Pails of Feedstock Emptied and Rinsed	Yes / No										
3.9.2	Agitator is Rotating Correctly	Yes / No										
3.10 or Ind	bioreactor volume Agitation Must b licate rpm speed	e 'Utt' Prior to Measurement										
3.10.1	Bioreactor Volume After Loading	Liters										
3.11	Sample Bioreactor for t=0	Date Time										
CIDF Pi Biorea	Page 2 of roject \\GOA\MyDocs\M\marc.legault\old_x ctor Control Form rev 31 Mar. 2016 .xlsxBioreactor Cor	2 _drive\1 CDC North\Templates\ trol Form rev 31 Mar, 2016 _xlsxControl Form Loadir										

,(

orestry				Attachr	nell	+3	pag	je .	12 -	113			ov 2016
lberta Agric re and F	rvations on Back	f Page	Manure Description, Source etc.										
A	Record Obse	ō	= н*с/100 Dry Manure Fed to Bioreactor		10/mi0#	i0/AtQ#	i0/Ad#	#Div/01	#Div/01	#Div/01	#Div/01	i0/Atd#	g CF 22 Mar 2016
Manure	Time		H =(F-D)/(E-D) *100	% DM Dry Matter	i0/AND#	i0/AIO#	i0/AND#	i0%Atd#	i0/Atd#	i0/Ad#	i0/Aid#	i0/Ai0#	eactor DM Loading
tion of Poultry N Control Form		etermination	G = (E - F)/(E-D) *100	% Moisture	i0/Ai0#	i0/md#	i0/AtO#	i0/AkO#	#D#V/0!	i0%M0#	i0/Aid#	i0/Aid#	h\Templates\Biore DM
ojectAerobic [% Dry Weight	Date	6 Dry Weight D	Ŀ	Foil Tray + Dry Manure gm Dried 60°C									Irive\1 CDC Nort
ACIDF Pro		6	i u	Foil Tray + Wet Manure gm									ault\old_x_d
			٩	Empty Foil Tray gm			1						∕\/marc.leg
		et Manure	с = А - В	Σ Wet [H ₂ O + Manure] Weight kg					bin.)A\MyDocs\N
dno		ight of W	۵	No Lid Empty Pail kg									///60
lecyc Gro		Total We	٩	No Lid Full Manure Pail kg									يد
Nutrient R	Trial			Pail # / Sample	-1	2	m	4	ъ	9	7	∞	Page 1 c

	group					A	H	ac	hr	ne	17	F.	3	P	RS	e	13	3	1	I O Ipm			
. (Nutrient Recyng (Notes indicate Sample Points, antifoam additions, etc.																	ocs\M\marc.legault\old_x_drive\1 CDC North\Tem actor Routine Data Template 18 May 2016.xlsx Dua	2 1 1 1		
	START:	END:	Antifoam							×										\GOA\MyD Biore			
	Check	Fixed	Oxygen Ipm																	1	5 x		
	Routine	Control	Oxygen Ipm																			•	
. 6	cactor		rpm																	of			
	016 Bi	.*	dO mg/L																_	Page			
	roject 2		EC ms/cm			~																	
	ACIDF P		Hd																				
			Temp °c													s							
		roi Loop	Hd												*								
	trol Loop	pH Cont	Temp °c																				
	pH Con	rd Loop	μd																				
	e and Fo	pH Gua	Temp °C																				
(culture		Time 24:00																	116			
C	Alberta A _b . Trial #		Date yyyy mm dd		*						2									Rev 18 May 20			

Attachment 4 – Fermentation and Nutrient Graphs

Trial 1

Trial 5

Trial 6

Trial 7

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

Trial 10

ACIDF Revised Jan 2015

Trial 11

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

Trial 12

Page 119

ACIDF Revised Jan 2015

\\GOA\MyDocs\M\marc.legault\old_x_drive\1 CDC North\ACIDF 2015, 2016, 2015, 2016, 2017\Graph's and Data\Sulpheric and phosphoric\Trials 12 runtime and nutrient.xisx Easily Dissolved Metals Graph 2

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

Page 133

ACIDF Revised Jan 2015

Attachment 5 – Nutrient Analysis of Specific pH Agents

Tojal 13 323-01 (17-WY-08)	P	4 Con	trol f	Igente	5 100	KOH	13 PO4	: 4 Hz SO NHA OH
PIBIR Laboratories Inc.	<u>Cer</u>	<u>tificate</u>	of Ana	<u>lysis</u>	. a ca	II Toll Free	e: 1-866-4 <mark>5</mark> 0-	3957
Sample ID and Parameters Measured	Result	Detection Limit	Units	Quantity Analyzed	Test Method	*DF	Date Analyzed	Note
PBR ID: 17-WY-08								
Client ID: Trial 12 Sample 8 2017/02/14 9:20								
Matrix: Boultry Manura Digostato								
Chlorido by IC								
Chloride (Cl)	831.20	0.50	mg/L	10ml	Prot#1412	10 ⁻²	170316	
Nitrate as N by IC						10	110310	
Nitrate (as N)	<0.1	0.1	mg/L	10ml	Prot#1412	10 ⁻²	170316	
Sulfate by IC				1	and the second second			
Sulfate (SO4)	1997.80	0.50	mg/L	10ml	Prot#1412	10 ⁻³	170317	
Nitrite as N by IC								
Nitrite (as N)	3.65	0.10	mg/L	10ml	Prot#1412	10-2	170316	
Nitrite + Nitrate as N	3.65	0.10	mg/L	NA	Calculation			
Ammonia as N by IC	4391.64							
NH4-N		0.70	mg/L	10ml	Prot#1410	10-2	170321	
Dissolved Metals by ICP-OES								
Calcium (Ca) - Dissolved	2276.40	0.50	mg/L	20ml	Prot#1420	10-2	170316	
Iron (Fe) - Dissolved	41.81	0.05	mg/L	20ml	Prot#1420	10 ⁻¹	170316	
Magnesium (Mg) - Dissolved	519.76	0.30	mg/L	20ml	Prot#1420	10 ⁻¹	170316	
Manganese (Mn) - Dissolved	9.35	0.01	mg/L	20ml	Prot#1420	10 ⁻¹	170316	
Potassium (K) - Dissolved	2265.62	0.30	mg/L	20ml	Prot#1420	10-2	170316	
Sodium (Na) - Dissolved	441.41	0.10	mg/L	20ml	Prot#1420	10 ⁻¹	170316	
Total Hardness (as CaCO3)	7822.01	5	mg/L	NA	calculation	NA		
Extractable Regulated Metals (AI, Ag, As,B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, U, V, Zn)								Please see suble report attached.
pH, Conductivity and Total Alkalinity								
рН	5.22	0.10	pH	50ml	Prot#1401	NA	170314	
Conductivity (EC)	79.2	0.20	mS/cm	50ml	Prot#1403	10 ⁻³	170321	
Bicarbonate (HCO3)	435.0	5.0	mg/L	NA	calculation	NA		
Carbonate (CO3)	<5	5.0	mg/L	. NA	calculation	NA		
Hydroxide (OH)	<5	5.0	mg/L	NA	calculation	NA	100.0100	
Alkalinity, Total (as CaCO ₃)	356.6	5.0	mg/L	50ml	Prot#1405	10-2	170321	
p-Alkalinity	<5	5.0	mg/L	NA	Prot#1405	NA		+
TDS (Calculated)	8597.66	5.0	mg/L	NA	calculation	NA		
Ion Balance	53		%	NA	calculation	NA		
Sodium Adsorption Ratio	2.20			NA	calculation	NA		
Ortho -Phosphate	1443.5	0.1	mg/L	50ml	Prot#1421	10-3	170320	
Biological Oxygen Demand (BOD)	1356.0	2.0	mg/L	0.5ml	Prot#1422	NA	170316	

*DF = Dilution Factor used for analysis

Vaishall

25% Approved by:

Vaishalli Girdhar (Analyst)

Dr. Rajeshwar Singh, Director Laboratory Operations Date: March 23,2017

Date: March 23,2017

9960 — 67th Avenue, Edmonton, Alberta, Canada T6E 0P5 Phone: (780) 450-3957 Fax: (780) 450-3960 Website : www.pbr.ca E-mail: pbr@pbr.ca Manure loading 9.56 Dry Matter

AAAF 160907-01 (16-BMG-03)

Trial 10 ALSONT H2SO4 PH Page. Certificate of Analysis NH4 OH Base Agent Page 2

Laboratories Inc

	Sample ID and Parameters Measured	Result	Detection Limit	Units	Quantity Analyzed	Test Method	*DF	Date Analyzed	N	lote
	PBR ID: 16-BMG-03									
	Client ID: Quarantine Tank sample 6 2016/08/30 9:05	1								
	Matrix: Greenhouse water									
	Chloride by IC							-		
	Chloride (Cl)	1121.00	0.50	mg/L	10ml	Prot#1412	10-2	160831		
	Nitrate as N by IC									
	Nitrate (as N)	40.5	0.1	mg/L	10ml	Prot#1412	10-2	160831		
	Sulfate by IC									
×	Sulfate (SO4)	28746.00	0.50	mg/L	10ml	Prot#1412	10-3	160831		
	Nitrite as N by IC									
	Nitrite (as N)	24.20	0,10	mg/L	10ml	Prot#1412	10-2	160831		
	Nitrite + Nitrate as N	64.70	0.10	mg/L	NA	Calculation	**************************************			
	Ammonia as N by IC			· *						
	NH4-N	7109.00	0.70	mg/L	10ml	Prot#1410	10-1	160902		
	Dissolved Metals by ICP-OES									
	Calcium (Ca) - Dissolved	2171.63	0.50	mg/L	20ml	Prot#1420	10-2	160831		
	Iron (Fe) - Dissolved	34.51	0.05	mg/L	20ml	Prot#1420	10-1	160831		
	Magnesium (Mg) - Dissolved	633.31	0.30	mg/L	. 20ml	Prot#1420	10-1	160831		
	Manganese (Mn) - Dissolved	42.15	0.01	mg/L	20ml	Prot#1420	10-1	160831		
	Potassium (K) - Dissolved	2449.78	0.30	mg/L	20ml	Prot#1420	10-2	160831		
1	Sodium (Na) - Dissolved	560.71	0.10	mg/L	20ml	Prot#1420	10-1	160831		
2	Total Hardness (as CaCO3)	8025.65	5	mg/L	NA	calculation	NA		T. H	anc a
	pH, Conductivity and Total Alkalinity							Contraction of the second	30 AJA	125.0
	pH	6.13	0.10	pH	50ml	Prot#1401	NA	160830	5.8	5.4
	Conductivity (EC)	95.47	0.20	mS/cm	50ml	Prot#1403	NA	160831	51.5	570
	Bicarbonate (HCO3)	754.0	5.0	mg/L	NA	calculation	10-1	160906	-	
	Carbonate (CO3)	<5	5.0	mg/L	NA	calculation	NA	160906		
	Hydroxide (OH)	<5	5.0	mg/L	NA	calculation	NA	160906		
	Alkalinity, Total (as CaCO ₃)	618.0	5.0	mg/L	50ml	Prot#1405	10-1	160906		
	p-Alkalinity	<5	5.0	mg/L	NA	Prot#1405	NA	160906	<u> </u>	
	TDS (Calculated)	36321.67	5.0	mg/L	NA	calculation	NA			
	Ion Balance	45		%	NA	calculation	NA			
	Sodium Adsorption Ratio	2.7			NA	calculation	NA			
	Ortho -Phosphate	1199.1	0.1	mg/L	50ml	Prot#1421	10-4	160902		

*DF = Dilution Factor used for analysis

Manure Loading 13.4% Vais

Vaishalli Girdhar (Analyst) Date: Sept 7, 2016

Dr. Rajeshwar Singh, Director Laboratory Operations Date: Sept 7, 2016

9960 -- 67th Avenue, Edmonton, Alberta, Canada TGE OP5 Phone: (780) 450-3957 Fax: (780) 450-3960 Website : www.pbr.ca E-mail: pbr@pbr.ca

Alberta Agriculture and Forestry

The ACIDF Project

Nutrient Recycling Group

OF0794 2016/03/01 10:30

NOOTINE WATER - FILTERED		TRIAL COECANT	Mawam Joh Number	- DC1EC20
Duration David	UNITS	TRIAL 6DECANT		r: B615638
Runtime Days		33.9	Report Date: 2016/0	3/09
Runtime Hours		813.0	T	
Calculated Parameters			Maxxam ID	OFC
Anion Sum meq/L	meq/L	770	Sampling Date	2016/03,
Cation Sum meq/L	meq/L	520		
Hardness (CaCO3)	mg/L	<0.50		
Ion Balance	N/A	0.67	L/ PA	1 -
Dissolved Nitrate (NO3)	mg/L	<4.4	1310	4 P
Nitrate plus Nitrite (N)	mg/L	<0.020		1 A
Dissolved Nitrite (NO2)	mg/L	<3.3	Cont	A
Total Dissolved Solids	mg/L	44000	Contr	01 11
Misc. Inorganics				1
Conductivity	mS/cm		NHAOT	7
Anions				
Alkalinity (PP as CaCO3)	mg/L	<10 (9)		
Alkalinity (Total as CaCO3	mg/L	7000 (9)	1	
Bicarbonate (HCO3)	mg/L	8500 (9)	1	
Carbonate (CO3)	mg/L	<10 (9)	1	
Hydroxide (OH)	mg/L	<10 (9)	1	
Dissolved Sulphate (SO4)	mg/L	1300 (9)	1	
Dissolved Chloride (CI)	mg/L	1100 (9)		1 1
Nutrients			Bioreect	ter Lo
Dissolved Nitrite (N)	mg/L	<1.0 (9)	0/1	
Dissolved Nitrate (N)	mg/l	<1.0 (9)	646	Bry M
Lab Filtered Elements		1210 (0)	0,10	
Dissolved Calcium (Ca)	mg/I	<30	TLO	MI
Dissolved Iron (Fe)	mg/L	0.83	Total Bro	m
Dissolved Magnosium (Mg)	mg/L	<20	-	01 1
Dissolved Manganese (Mn)	mg/L	<0.40	11.2	6 dry
Dissolved Mangariese (Min)	mg/L	1500	-	
Dissolved Potassium (K)	mg/L	1500	-	
Dissolved Sodium (Na)	Mg/L	300	4	
RESULTS OF CHEMICAL ANAL	YSES OF W	AIER	-	
Maxxam ID		OF0794	-	
Sampling Date		2016/03/01 10:30	×	
Demand Parameters			4	
Biochemical Oxygen Deman	mg/L	380 (30)	4	
Total Chemical Oxygen Dem	mg/L	9500 (14)	4	
Misc. Inorganics		2007.00	4	
Conductivity MS/cm	mS/cm	32.0	4	
рН	рН	6.47	4	
Anions			-	
Dissolved Fluoride (F)	mg/L	0.32	4	
Total Ammonia (N) mg/L	mg/L	6500 (29)		
Orthophosphate (P) mg/L	mg/L	8800 (29)		

3 PO4 PH Control Agents HAOH

oreactor Loading 6.46 Bry Matter Manure 1 Broth (manure + Mother) Liguor 11.26 dry matter

\\GOA\MyDocs\M\marc.legault\old_x_drive\1 CDC North\ACIDF 2015, 2016\Graph's and Data\ Nutrient Profile using H3PO4 as pH Control Agent.xlsxAF data Result (1)

Page 1 of 1

AAAF 160907-01 (16-BMG-05)

Stock Tank

Certificate of Analysis

Sample ID and Parameters Measured	Result	Detection Limit	Units	Quantity Analyzed	Test Method	*DF	Date Analyzed		Note
PBR ID: 16-BMG-05	A CONTRACTOR								
Client ID: Nutrient Stock Tank sample 9 2016/08/30 9:10	1								
Matrix: Greenhouse water								1	
Chloride by IC								-	
Chloride (Cl)	1233.80	0.50	mg/L	10ml	Prot#1412	10-2	160831		
Nitrate as N by IC							1		
Nitrate (as N)	7523.65	0.1	mg/L	10ml	Prot#1412	10-3	160831		
Sulfate by IC			- traing to a company					-	
Sulfate (SO4)	1735.10	0.50	mg/L	10ml	Prot#1412	10-2	160831		
Nitrite as N by IC						10			
Nitrite (as N)	3.83	0.10	mg/L	10ml	Prot#1412	10-2	160831		
Nitrite + Nitrate as N	7527.48	0.10	mg/L	NA	Calculation	10			
Ammonia as N by IC				-					
NH4-N	5882.33	0.70	mg/L	10ml	Prot#1410	.10-1	160902		
Dissolved Metals by ICP-OES	2 ×					10	100502		
Calcium (Ca) - Dissolved	912.97	0.50	mg/L	20ml	Prot#1420	10.2	160831		
Iron (Fe) - Dissolved	13.25	0.05	mg/L	20ml	Prot#1420	10-2	160831		
Magnesium (Mg) - Dissolved	395,50	0.30	mg/L	20ml	Prot#1420	10-2	160831		
Manganese (Mn) - Dissolved	20.44	0.01	· mg/L	20ml	Prot#1420	10-2	160831		
Potassium (K) - Dissolved	2295.90	0.30	mg/L	20ml	Prot#1420	10-2	160831		
Sodium (Na) - Dissolved	668.94	0.10	mg/L	20ml	Prot#1420	10-2	160831		
Total Hardness (as CaCO3)	3903.98	5	mg/L	NA	calculation	NA	100031		N
pH, Conductivity and Total Alkalinity			C.					2010	nouse
рН	4.86	0.10	pH	50ml	Prot#1401	NA	160830	AL	125
Conductivity (EC)	82.94	0.20	mS/cm	50ml	Prot#1403	NA	160831	7.0	4.3
Bicarbonate (HCO3)	141.5	5.0	mg/L	NA	calculation	10-1	160005	21	70
Carbonate (CO3)	<5	5.0	mg/L	NA	calculation	NA	160006		-
Hydroxide (OH)	<5	5.0	mg/L	NA	calculation	NA	160006		
Alkalinity, Total (as CaCO ₃)	116.0	5.0	mg/L	50ml	Prot#1405	10-1	160006		
p-Alkalinity	<5	5.0	mg/L	NA	Prot#1405	NA	160906	7	
TDS (Calculated)	40631.97	5.0	mg/L	NA	calculation	NA	100300		
Ion Balance	57		%	NA	calculation	NA	1		
Sodium Adsorption Ratio	4.7			NA	calculation	NA	and the second	-	
Ortho -Phosphate	1280.5	0.1	mg/L	50ml	Prot#1421	10.4	160902	4.4	

*DF = Dilution Factor used for analysis

Approved by:

Dr. Rajeshwar Singh, Director Laboratory Operations

Vaishalli Girdhar (Analyst)

Date: Sept 7, 2016

Date: Sept 7, 2016 9960 - 67th Avenue, Edmonton, Alberta, Canada T6E 0P5 Phone: (780) 450-3957 Fax: (780) 450-3960 Website : www.pbr.ca E-mail: pbr@pbr.ca Page

HNO3 PH

Call Toll Free: 1-866-450-3957 Control Agent

Attachment 6 - Residual vs Decant Nutrient Bar Graphs

Alberta Agricultu		ACIDF	2015 P	Nutrient Recycling Grou						
and Forestry		Pou	ltry M	anure			, 0			
REGULATED METALS	6 (CCME/AT1) -	TOTAL	•							
Maxxam ID	NQ6759	NQ6760								
Sampling Date	2015/11/16 09:00	2015/11/16 09:00		s	Alberta pil reme	Tier 1 ediation	Category A Manure Max. Conc. Within Product from Guidelines for Compost Quality PP 1340 Can. Council of Ministers of the Environment, 2005			
	TRIAL 3 DECANT	TRIAL 3 RESIDUAL	UNITS	Value	Units	Notes	Value	Units	Notes	
Low Level Elements			-							
Total Cadmium	0.92	13	ug/L	1.4	mg/kg		3.00	mg/kg		
Elements										
Total Aluminum	0.46	13	mg/L							
Total Antimony (Sb)	<0.0024	<0.0024	mg/L	20	mg/kg					
Total Arsenic (As)	0.011	0.014	mg/L	17	mg/kg	inorganic	13	mg/kg		
Total Barium (Ba)	<1.0	1.7	mg/L	750	mg/kg	non-barite		0.0		
Total Beryllium (Be)	<0.0040	<0.0040	mg/L	5	mg/kg					
Total Boron (B)	<2.0	<2.0	mg/L	2		hot water soluble				
Total Calcium (Ca)	58	2000	mg/L							
Total Chromium (Cr)	0.013	0.20	mg/L	64	mg/kg	total [hexavalent 0.4 mg/kg]	210	mg/kg		
Total Cobalt (Co)	0.014	0.031	mg/L	20	mg/kg			-		
Total Copper	0.85	3.5	mg/L	63	mg/kg		400	mg/kg		
Total Iron	<6.0	29	mg/L					0.0		
Total Lead (Pb)	0.0016	0.039	mg/L	70	mg/kg		150	mg/kg		
Total Lithium (Li)	<2.0	<2.0	mg/L		0.0					
Total Magnesium	<20	360	mg/L							
Total Manganese	0.85	23	mg/L							
Total Molybdenum	0.10	0.074	mg/L	4	mg/kg		5	mg/kg		
Total Nickel (Ni)	0.076	0.27	mg/L	50	mg/kg		62	mg/kg		
Total Phosphorus	1600	3000	mg/L							
Total Potassium (K)	530	540	mg/L							
Total Selenium (Se)	0.019	0.035	mg/L	1	mg/kg		2	mg/kg		
Total Silicon (Si)	17	22	mg/l					-		
Total Silver (Ag)	0.00054	0.00078	mg/L	20	mg/kg			-		
Total Sodium (Na)	130	130	mg/L	20	mg/ Ng			-		
Total Strontium (Sr)	<2.0	2.6	mg/L					+		
Total Sulphur (S)	170	160	mg/L							
Total Thallium (TI)	0.0014	0.0052	mg/L	1	mg/kg					
Total Tin (Sn)	<0.0040	<0.0040	mg/L	5	mg/kg					
Total Titanium (Ti)	0.045	0.33	mg/I					-		
Total Uranium (U)	0.0044	0.092	mg/L	23	mg/kg					
Total Vanadium (V)	0.019	0.11	mg/L	130	mg/kg					
Total Zinc (Zn)	1.6	34 (1)	mg/L	200	mg/kg		700	mg/kg		
moroundinerroals			-				0.00			
mercury morganic			1	6.6			0.80	mg/kg		

\\GOA\MyDocs\M\marc.legault\old_x_drive\1 CDC North\ACIDF 2015, 2016, 2017\ACIDF\Final Report\ Page 1 ofTrial 3 Tier 1 and compost A Decant Residual and Regulatory Limits.xlsxDecant Residual from Result (5)

ACIDF Revised Jan 2015

ACIDF Revised Jan 2015

Attachment 8 – Nutrient Stability Bar Graphs

ACIDF Revised Jan 2015